72 research outputs found

    2-round Substitution-Permutation and 3-round Feistel Networks have bad Algebraic Degree

    Get PDF
    We study algebraic degree profile of reduced-round block cipher schemes. We show that the degree is not maximal with elementary combinatorial and algebraic arguments. We discuss on how it can be turned into distinguishers from balanced random functions

    A Degree Bound For The c-Boomerang Uniformity Of Permutation Monomials

    Full text link
    Let Fq\mathbb{F}_q be a finite field of characteristic pp. In this paper we prove that the cc-Boomerang Uniformity, c≠0c \neq 0, for all permutation monomials xdx^d, where d>1d > 1 and p∤dp \nmid d, is bounded by d2d^2. Further, we utilize this bound to estimate the cc-boomerang uniformity of a large class of Generalized Triangular Dynamical Systems, a polynomial-based approach to describe cryptographic permutations, including the well-known Substitution-Permutation Network

    Cryptanalysis, Reverse-Engineering and Design of Symmetric Cryptographic Algorithms

    Get PDF
    In this thesis, I present the research I did with my co-authors on several aspects of symmetric cryptography from May 2013 to December 2016, that is, when I was a PhD student at the university of Luxembourg under the supervision of Alex Biryukov. My research has spanned three different areas of symmetric cryptography. In Part I of this thesis, I present my work on lightweight cryptography. This field of study investigates the cryptographic algorithms that are suitable for very constrained devices with little computing power such as RFID tags and small embedded processors such as those used in sensor networks. Many such algorithms have been proposed recently, as evidenced by the survey I co-authored on this topic. I present this survey along with attacks against three of those algorithms, namely GLUON, PRINCE and TWINE. I also introduce a new lightweight block cipher called SPARX which was designed using a new method to justify its security: the Long Trail Strategy. Part II is devoted to S-Box reverse-engineering, a field of study investigating the methods recovering the hidden structure or the design criteria used to build an S-Box. I co-invented several such methods: a statistical analysis of the differential and linear properties which was applied successfully to the S-Box of the NSA block cipher Skipjack, a structural attack against Feistel networks called the yoyo game and the TU-decomposition. This last technique allowed us to decompose the S-Box of the last Russian standard block cipher and hash function as well as the only known solution to the APN problem, a long-standing open question in mathematics. Finally, Part III presents a unifying view of several fields of symmetric cryptography by interpreting them as purposefully hard. Indeed, several cryptographic algorithms are designed so as to maximize the code size, RAM consumption or time taken by their implementations. By providing a unique framework describing all such design goals, we could design modes of operations for building any symmetric primitive with any form of hardness by combining secure cryptographic building blocks with simple functions with the desired form of hardness called plugs. Alex Biryukov and I also showed that it is possible to build plugs with an asymmetric hardness whereby the knowledge of a secret key allows the privileged user to bypass the hardness of the primitive

    Secure Block Ciphers - Cryptanalysis and Design

    Get PDF

    Cryptanalysis of Simon et al.:cryptanalysis of lightweight symmetric ciphers

    Get PDF

    Statistical cryptanalysis of block ciphers

    Get PDF
    Since the development of cryptology in the industrial and academic worlds in the seventies, public knowledge and expertise have grown in a tremendous way, notably because of the increasing, nowadays almost ubiquitous, presence of electronic communication means in our lives. Block ciphers are inevitable building blocks of the security of various electronic systems. Recently, many advances have been published in the field of public-key cryptography, being in the understanding of involved security models or in the mathematical security proofs applied to precise cryptosystems. Unfortunately, this is still not the case in the world of symmetric-key cryptography and the current state of knowledge is far from reaching such a goal. However, block and stream ciphers tend to counterbalance this lack of "provable security" by other advantages, like high data throughput and ease of implementation. In the first part of this thesis, we would like to add a (small) stone to the wall of provable security of block ciphers with the (theoretical and experimental) statistical analysis of the mechanisms behind Matsui's linear cryptanalysis as well as more abstract models of attacks. For this purpose, we consider the underlying problem as a statistical hypothesis testing problem and we make a heavy use of the Neyman-Pearson paradigm. Then, we generalize the concept of linear distinguisher and we discuss the power of such a generalization. Furthermore, we introduce the concept of sequential distinguisher, based on sequential sampling, and of aggregate distinguishers, which allows to build sub-optimal but efficient distinguishers. Finally, we propose new attacks against reduced-round version of the block cipher IDEA. In the second part, we propose the design of a new family of block ciphers named FOX. First, we study the efficiency of optimal diffusive components when implemented on low-cost architectures, and we present several new constructions of MDS matrices; then, we precisely describe FOX and we discuss its security regarding linear and differential cryptanalysis, integral attacks, and algebraic attacks. Finally, various implementation issues are considered

    Analyse et Conception d'Algorithmes de Chiffrement Légers

    Get PDF
    The work presented in this thesis has been completed as part of the FUI Paclido project, whose aim is to provide new security protocols and algorithms for the Internet of Things, and more specifically wireless sensor networks. As a result, this thesis investigates so-called lightweight authenticated encryption algorithms, which are designed to fit into the limited resources of constrained environments. The first main contribution focuses on the design of a lightweight cipher called Lilliput-AE, which is based on the extended generalized Feistel network (EGFN) structure and was submitted to the Lightweight Cryptography (LWC) standardization project initiated by NIST (National Institute of Standards and Technology). Another part of the work concerns theoretical attacks against existing solutions, including some candidates of the nist lwc standardization process. Therefore, some specific analyses of the Skinny and Spook algorithms are presented, along with a more general study of boomerang attacks against ciphers following a Feistel construction.Les travaux présentés dans cette thèse s’inscrivent dans le cadre du projet FUI Paclido, qui a pour but de définir de nouveaux protocoles et algorithmes de sécurité pour l’Internet des Objets, et plus particulièrement les réseaux de capteurs sans fil. Cette thèse s’intéresse donc aux algorithmes de chiffrements authentifiés dits à bas coût ou également, légers, pouvant être implémentés sur des systèmes très limités en ressources. Une première partie des contributions porte sur la conception de l’algorithme léger Lilliput-AE, basé sur un schéma de Feistel généralisé étendu (EGFN) et soumis au projet de standardisation international Lightweight Cryptography (LWC) organisé par le NIST (National Institute of Standards and Technology). Une autre partie des travaux se concentre sur des attaques théoriques menées contre des solutions déjà existantes, notamment un certain nombre de candidats à la compétition LWC du NIST. Elle présente donc des analyses spécifiques des algorithmes Skinny et Spook ainsi qu’une étude plus générale des attaques de type boomerang contre les schémas de Feistel

    Anomalies and Vector Space Search: Tools for S-Box Analysis

    Get PDF
    International audienceS-boxes are functions with an input so small that the simplest way to specify them is their lookup table (LUT). How can we quantify the distance between the behavior of a given S-box and that of an S-box picked uniformly at random? To answer this question, we introduce various "anomalies". These real numbers are such that a property with an anomaly equal to should be found roughly once in a set of 2a2^a random S-boxes. First, we present statistical anomalies based on the distribution of the coefficients in the difference distribution table, linear approximation table, and for the first time, the boomerang connectivity table. We then count the number of S-boxes that have block-cipher like structures to estimate the anomaly associated to those. In order to recover these structures, we show that the most general tool for decomposing S-boxes is an algorithm efficiently listing all the vector spaces of a given dimension contained in a given set, and we present such an algorithm. Combining these approaches, we conclude that all permutations that are actually picked uniformly at random always have essentially the same cryptographic properties and the same lack of structure

    Decorrelation: A Theory for Block Cipher Security

    Get PDF
    Pseudorandomness is a classical model for the security of block ciphers. In this paper we propose convenient tools in order to study it in connection with the Shannon Theory, the Carter-Wegman universal hash functions paradigm, and the Luby-Rackoff approach. This enables the construction of new ciphers with security proofs under specific models. We show how to ensure security against basic differential and linear cryptanalysis and even more general attacks. We propose practical construction scheme

    Block Cipher Analysis

    Get PDF
    • …
    corecore