18 research outputs found

    Multicoloured Random Graphs: Constructions and Symmetry

    Full text link
    This is a research monograph on constructions of and group actions on countable homogeneous graphs, concentrating particularly on the simple random graph and its edge-coloured variants. We study various aspects of the graphs, but the emphasis is on understanding those groups that are supported by these graphs together with links with other structures such as lattices, topologies and filters, rings and algebras, metric spaces, sets and models, Moufang loops and monoids. The large amount of background material included serves as an introduction to the theories that are used to produce the new results. The large number of references should help in making this a resource for anyone interested in beginning research in this or allied fields.Comment: Index added in v2. This is the first of 3 documents; the other 2 will appear in physic

    Synchronizing permutation groups and graph endomorphisms

    Get PDF
    The current thesis is focused on synchronizing permutation groups and on graph endo- morphisms. Applying the implicit classification of rank 3 groups, we provide a bound on synchronizing ranks of rank 3 groups, at first. Then, we determine the singular graph endomorphisms of the Hamming graph and related graphs, count Latin hypercuboids of class r, establish their relation to mixed MDS codes, investigate G-decompositions of (non)-synchronizing semigroups, and analyse the kernel graph construction used in the theorem of Cameron and Kazanidis which identifies non-synchronizing transformations with graph endomorphisms [20]. The contribution lies in the following points: 1. A bound on synchronizing ranks of groups of permutation rank 3 is given, and a complete list of small non-synchronizing groups of permutation rank 3 is provided (see Chapter 3). 2. The singular endomorphisms of the Hamming graph and some related graphs are characterised (see Chapter 5). 3. A theorem on the extension of partial Latin hypercuboids is given, Latin hyper- cuboids for small values are counted, and their correspondence to mixed MDS codes is unveiled (see Chapter 6). 4. The research on normalizing groups from [3] is extended to semigroups of the form , and decomposition properties of non-synchronizing semigroups are described which are then applied to semigroups induced by combinatorial tiling problems (see Chapter 7). 5. At last, it is shown that all rank 3 graphs admitting singular endomorphisms are hulls and it is conjectured that a hull on n vertices has minimal generating set of at most n generators (see Chapter 8)

    Unsolved Problems in Group Theory. The Kourovka Notebook

    Full text link
    This is a collection of open problems in group theory proposed by hundreds of mathematicians from all over the world. It has been published every 2-4 years in Novosibirsk since 1965. This is the 19th edition, which contains 111 new problems and a number of comments on about 1000 problems from the previous editions.Comment: A few new solutions and references have been added or update

    Automated theory formation in pure mathematics

    Get PDF
    The automation of specific mathematical tasks such as theorem proving and algebraic manipulation have been much researched. However, there have only been a few isolated attempts to automate the whole theory formation process. Such a process involves forming new concepts, performing calculations, making conjectures, proving theorems and finding counterexamples. Previous programs which perform theory formation are limited in their functionality and their generality. We introduce the HR program which implements a new model for theory formation. This model involves a cycle of mathematical activity, whereby concepts are formed, conjectures about the concepts are made and attempts to settle the conjectures are undertaken.HR has seven general production rules for producing a new concept from old ones and employs a best first search by building new concepts from the most interesting old ones. To enable this, HR has various measures which estimate the interestingness of a concept. During concept formation, HR uses empirical evidence to suggest conjectures and employs the Otter theorem prover to attempt to prove a given conjecture. If this fails, HR will invoke the MACE model generator to attempt to disprove the conjecture by finding a counterexample. Information and new knowledge arising from the attempt to settle a conjecture is used to assess the concepts involved in the conjecture, which fuels the heuristic search and closes the cycle.The main aim of the project has been to develop our model of theory formation and to implement this in HR. To describe the project in the thesis, we first motivate the problem of automated theory formation and survey the literature in this area. We then discuss how HR invents concepts, makes and settles conjectures and how it assesses the concepts and conjectures to facilitate a heuristic search. We present results to evaluate HR in terms of the quality of the theories it produces and the effectiveness of its techniques. A secondary aim of the project has been to apply HR to mathematical discovery and we discuss how HR has successfully invented new concepts and conjectures in number theory

    Subject Index Volumes 1–200

    Get PDF

    Acta Scientiarum Mathematicarum : Tomus 53. Fasc. 3-4.

    Get PDF

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group

    Distribución de álgebras de lie, MALCEV y evolución en clases de isotopismos

    Get PDF
    El presente manuscrito trata distintos aspectos de la teoría de isotopismos de álgebras, centrándose en particular en los isotopismos de álgebras de Lie, de Malcev y de evolución, los cuáles no han sido suficientemente estudiados en la literatura. La distribución que sigue el manuscrito se detalla a continuación. En el Capítulo 1 se expone un breve estudio acerca del origen y desarrollo de la teoría de isotopismos, constituyendo en este sentido la primera introducción en la literatura existente en introducir la mencionada teoría desde un punto de vista general. El Capítulo 2 trata de aquellos resultados en Geometría Algebraica Computacional y en Teoría de Grafos que usamos a lo largo del manuscrito con vistas a determinar computacionalmente las clases de isotopismos de cada tipo de álgebra bajo consideración en los siguientes capítulos. Se describen en particular un par de grafos que permiten definir funtores inyectivos entre álgebras de dimensión finita sobre cuerpos finitos y los citados grafos. El cálculo computacional de invariantes por isomorfismos de estos grafos juega un papel destacable en la distribución de las distintas familias de álgebras en clases de isotopismos y de isomorfismos. Algunos resultados preliminares son expuestos en este sentido, particularmente acerca de la distribución de anillos de cuasigrupos parciales sobre cuerpos finitos. El Capítulo 3 se centra en la distribución de clases de isomorfismos y de isotopismos de dos familias de álgebras de Lie: el conjunto Pn;q de álgebras de Lie prefiliformes n-dimensionales sobre el cuerpo finito Fq y el conjunto Fn(K) de álgebras de Lie filiformes n-dimensionales sobre un cuerpo K. Se prueba concretamente la existencia de n clases de isotopismos en Pn;q. También se introducen dos nuevas series de invariantes por isotopismos que son usados para determinar las clases de isotopismos del conjunto Fn(K) para n≤7 sobre cuerpos algebraicamente cerrados y sobre cuerpos finitos. El Capítulo 4 trata con distintos ideales radicales cero-dimensionales cuyos conjuntos algebraicos asociados pueden indentificarse de forma única con el conjunto Mn(K) de álgebras de Malcev n-dimensionales sobre un cuerpo finito K. El cálculo computacional de sus bases reducidas de Gröbner, junto a la clasificación de álgebras de Lie sobre cuerpos finitos dada por De Graaf y Strade, permiten determinar la distribución de M3(K) y M4(K) no sólo en clases de isomorfismos, que es el criterio usual, sino también en clases de isotopismos. En concreto, probamos la existencia de cuatro clases de isotopismos en M3(K) y ocho clases de isotopismos en M4(K). Además, se prueba que todo álgebra de Malcev 3-dimensional sobre cualquier cuerpo finito y todo álgebra de Malcev 4-dimensional sobre un cuerpo finito de característica distinta de dos es isotópica a un magma-álgebra de Lie. Finalmente, el Capítulo 5 trata con el conjunto En(K) de álgebras de evolución n-dimensionales sobre un cuerpo K, cuya distribución en clases de isotopismos está relacionada de forma única con mutaciones en Genética no Mendeliana. Se centra en concreto en el caso bi-dimensional, el cuál está relacionado con los procesos de reproducción asexual de organismos diploides. Se prueba en particular que el conjunto E2(K) se distribuye en cuatro clases de isotopismos, independientemente de cuál sea el cuerpo base y se caracteriza sus clases de isomorfismos.This manuscript deals with distinct aspects of the theory of isotopisms of algebras. Particularly, we focus on isotopisms of Lie, Malcev and evolution algebras, for which this theory has not been enough studied in the literature. The manuscript is organized as follows. In Chapter 1 we expose a brief survey about the origin and development of the theory of isotopisms. This constitutes a first attempt in the literature to introduce this theory from a general point of view. Chapter 2 deals with those results in Computational Algebraic Geometry and Graph Theory that we use throughout the manuscript in order to compute the isotopism classes of each type of algebra under consideration in the subsequent chapters. We describe in particular a pair of graphs that enable us to define faithful functors between finite-dimensional algebras over finite fields and these graphs. The computation of isomorphism invariants of these graphs plays a remarkable role in the distribution of distinct families of algebras into isotopism and isomorphism classes. Some preliminary results are exposed in this regard, particularly on the distribution of partial-quasigroup rings over finite fields. Chapter 3 focuses on the distribution into isomorphism and isotopism classes of two families of Lie algebras: the set Pn;q of n-dimensional pre- filiform Lie algebras over the finite field Fq and the set Fn(K) of n-dimensional filiform Lie algebras over a base field K. Particularly, we prove the existence of n isotopism classes in Pn;q. We also introduce two new series of isotopism invariants that are used to determine the isotopism classes of the set Fn(K) for n ≤ 7 over algebraically closed fields and finite fields. Chapter 4 deals with distinct zero-dimensional radical ideals whose related algebraic sets are uniquely identified with the set Mn(K) of n-dimensional Malcev magma algebras over a finite field K. The computation of their reduced Gröbner bases, together with the classification of Lie algebras over finite fields given by De Graaf and Strade, enable us to determine the distribution of M3(K) and M4(K) not only into isomorphism classes, which is the usual criterion, but also into isotopism classes. Particularly, we prove the existence of four isotopism classes in M3(K) and eight isotopism classes in M4(K). Besides, we prove that every 3-dimensional Malcev algebra over any finite field and every 4-dimensional Malcev algebra over a finite field of characteristic distinct from two is isotopic to a Lie magma algebra. Finally, Chapter 5 deals with the set En(K) of n-dimensional evolution algebras over a field K, whose distribution into isotopism classes is uniquely related with mutations in non-Mendelian genetics. Particularly, we focus on the two-dimensional case, which is related to the asexual reproduction processes of diploid organisms. We prove that the set E2(K) is distributed into four isotopism classes, whatever the base field is, and we characterize its isomorphism classes
    corecore