584 research outputs found

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    Dirac's theorem for random regular graphs

    Get PDF
    We prove a `resilience' version of Dirac's theorem in the setting of random regular graphs. More precisely, we show that, whenever dd is sufficiently large compared to ε>0\varepsilon>0, a.a.s. the following holds: let GG' be any subgraph of the random nn-vertex dd-regular graph Gn,dG_{n,d} with minimum degree at least (1/2+ε)d(1/2+\varepsilon)d. Then GG' is Hamiltonian. This proves a conjecture of Ben-Shimon, Krivelevich and Sudakov. Our result is best possible: firstly, the condition that dd is large cannot be omitted, and secondly, the minimum degree bound cannot be improved.Comment: Final accepted version, to appear in Combinatorics, Probability & Computin

    Toughness and hamiltonicity in kk-trees

    Get PDF
    We consider toughness conditions that guarantee the existence of a hamiltonian cycle in kk-trees, a subclass of the class of chordal graphs. By a result of Chen et al.\ 18-tough chordal graphs are hamiltonian, and by a result of Bauer et al.\ there exist nontraceable chordal graphs with toughness arbitrarily close to 74\frac{7}{4}. It is believed that the best possible value of the toughness guaranteeing hamiltonicity of chordal graphs is less than 18, but the proof of Chen et al.\ indicates that proving a better result could be very complicated. We show that every 1-tough 2-tree on at least three vertices is hamiltonian, a best possible result since 1-toughness is a necessary condition for hamiltonicity. We generalize the result to kk-trees for k2k\ge 2: Let GG be a kk-tree. If GG has toughness at least k+13,\frac{k+1}{3}, then GG is hamiltonian. Moreover, we present infinite classes of nonhamiltonian 1-tough kk-trees for each $k\ge 3

    Hamilton cycles in highly connected and expanding graphs

    Full text link
    In this paper we prove a sufficient condition for the existence of a Hamilton cycle, which is applicable to a wide variety of graphs, including relatively sparse graphs. In contrast to previous criteria, ours is based on only two properties: one requiring expansion of ``small'' sets, the other ensuring the existence of an edge between any two disjoint ``large'' sets. We also discuss applications in positional games, random graphs and extremal graph theory.Comment: 19 page

    A Survey of Best Monotone Degree Conditions for Graph Properties

    Full text link
    We survey sufficient degree conditions, for a variety of graph properties, that are best possible in the same sense that Chvatal's well-known degree condition for hamiltonicity is best possible.Comment: 25 page

    The number of Hamiltonian decompositions of regular graphs

    Full text link
    A Hamilton cycle in a graph Γ\Gamma is a cycle passing through every vertex of Γ\Gamma. A Hamiltonian decomposition of Γ\Gamma is a partition of its edge set into disjoint Hamilton cycles. One of the oldest results in graph theory is Walecki's theorem from the 19th century, showing that a complete graph KnK_n on an odd number of vertices nn has a Hamiltonian decomposition. This result was recently greatly extended by K\"{u}hn and Osthus. They proved that every rr-regular nn-vertex graph Γ\Gamma with even degree r=cnr=cn for some fixed c>1/2c>1/2 has a Hamiltonian decomposition, provided n=n(c)n=n(c) is sufficiently large. In this paper we address the natural question of estimating H(Γ)H(\Gamma), the number of such decompositions of Γ\Gamma. Our main result is that H(Γ)=r(1+o(1))nr/2H(\Gamma)=r^{(1+o(1))nr/2}. In particular, the number of Hamiltonian decompositions of KnK_n is n(1o(1))n2/2n^{(1-o(1))n^2/2}

    Resilient degree sequences with respect to Hamilton cycles and matchings in random graphs

    Full text link
    P\'osa's theorem states that any graph GG whose degree sequence d1dnd_1 \le \ldots \le d_n satisfies dii+1d_i \ge i+1 for all i<n/2i < n/2 has a Hamilton cycle. This degree condition is best possible. We show that a similar result holds for suitable subgraphs GG of random graphs, i.e. we prove a `resilience version' of P\'osa's theorem: if pnClognpn \ge C \log n and the ii-th vertex degree (ordered increasingly) of GGn,pG \subseteq G_{n,p} is at least (i+o(n))p(i+o(n))p for all i<n/2i<n/2, then GG has a Hamilton cycle. This is essentially best possible and strengthens a resilience version of Dirac's theorem obtained by Lee and Sudakov. Chv\'atal's theorem generalises P\'osa's theorem and characterises all degree sequences which ensure the existence of a Hamilton cycle. We show that a natural guess for a resilience version of Chv\'atal's theorem fails to be true. We formulate a conjecture which would repair this guess, and show that the corresponding degree conditions ensure the existence of a perfect matching in any subgraph of Gn,pG_{n,p} which satisfies these conditions. This provides an asymptotic characterisation of all degree sequences which resiliently guarantee the existence of a perfect matching.Comment: To appear in the Electronic Journal of Combinatorics. This version corrects a couple of typo
    corecore