1,460 research outputs found

    A New Game Invariant of Graphs: the Game Distinguishing Number

    Full text link
    The distinguishing number of a graph GG is a symmetry related graph invariant whose study started two decades ago. The distinguishing number D(G)D(G) is the least integer dd such that GG has a dd-distinguishing coloring. A distinguishing dd-coloring is a coloring c:V(G){1,...,d}c:V(G)\rightarrow\{1,...,d\} invariant only under the trivial automorphism. In this paper, we introduce a game variant of the distinguishing number. The distinguishing game is a game with two players, the Gentle and the Rascal, with antagonist goals. This game is played on a graph GG with a set of dNd\in\mathbb N^* colors. Alternately, the two players choose a vertex of GG and color it with one of the dd colors. The game ends when all the vertices have been colored. Then the Gentle wins if the coloring is distinguishing and the Rascal wins otherwise. This game leads to define two new invariants for a graph GG, which are the minimum numbers of colors needed to ensure that the Gentle has a winning strategy, depending on who starts. These invariants could be infinite, thus we start by giving sufficient conditions to have infinite game distinguishing numbers. We also show that for graphs with cyclic automorphisms group of prime odd order, both game invariants are finite. After that, we define a class of graphs, the involutive graphs, for which the game distinguishing number can be quadratically bounded above by the classical distinguishing number. The definition of this class is closely related to imprimitive actions whose blocks have size 22. Then, we apply results on involutive graphs to compute the exact value of these invariants for hypercubes and even cycles. Finally, we study odd cycles, for which we are able to compute the exact value when their order is not prime. In the prime order case, we give an upper bound of 33

    Locally identifying coloring in bounded expansion classes of graphs

    Get PDF
    A proper vertex coloring of a graph is said to be locally identifying if the sets of colors in the closed neighborhood of any two adjacent non-twin vertices are distinct. The lid-chromatic number of a graph is the minimum number of colors used by a locally identifying vertex-coloring. In this paper, we prove that for any graph class of bounded expansion, the lid-chromatic number is bounded. Classes of bounded expansion include minor closed classes of graphs. For these latter classes, we give an alternative proof to show that the lid-chromatic number is bounded. This leads to an explicit upper bound for the lid-chromatic number of planar graphs. This answers in a positive way a question of Esperet et al [L. Esperet, S. Gravier, M. Montassier, P. Ochem and A. Parreau. Locally identifying coloring of graphs. Electronic Journal of Combinatorics, 19(2), 2012.]

    Distinguishing tournaments with small label classes

    Get PDF
    A d-distinguishing vertex (arc) labeling of a digraph is a vertex (arc) labeling using d labels that is not preserved by any nontrivial automorphism. Let ρ(T) (ρ′(T)) be the minimum size of a label class in a 2-distinguishing vertex (arc) labeling of a tournament T. Gluck's Theorem implies that ρ(T) ≤ ⌊n/2⌋ for any tournament T of order n. We construct a family of tournaments ℌ such that ρ(T) ≥ ⌊n/2⌋ for any tournament of order n in ℌ. Additionally, we prove that ρ′(T) ≤ ⌊7n/36⌋ + 3 for any tournament T of order n and ρ′(T) ≥ ⌈n/6⌉ when T ∈ ℌ and has order n. These results answer some open questions stated by Boutin.Peer ReviewedPostprint (published version
    corecore