4,370 research outputs found

    2-State 2-Symbol Turing Machines with Periodic Support Produce Regular Sets

    Full text link
    We say that a Turing machine has periodic support if there is an infinitely repeated word to the left of the input and another infinitely repeated word to the right. In the search for the smallest universal Turing machines, machines that use periodic support have been significantly smaller than those for the standard model (i.e. machines with the usual blank tape on either side of the input). While generalising the model allows us to construct smaller universal machines it makes proving decidability results for the various state-symbol products that restrict program size more difficult. Here we show that given an arbitrary 2-state 2-symbol Turing machine and a configuration with periodic support the set of reachable configurations is regular. Unlike previous decidability results for 2-state 2-symbol machines, here we include in our consideration machines that do not reserve a transition rule for halting, which further adds to the difficulty of giving decidability results

    Complexity of Two-Dimensional Patterns

    Full text link
    In dynamical systems such as cellular automata and iterated maps, it is often useful to look at a language or set of symbol sequences produced by the system. There are well-established classification schemes, such as the Chomsky hierarchy, with which we can measure the complexity of these sets of sequences, and thus the complexity of the systems which produce them. In this paper, we look at the first few levels of a hierarchy of complexity for two-or-more-dimensional patterns. We show that several definitions of ``regular language'' or ``local rule'' that are equivalent in d=1 lead to distinct classes in d >= 2. We explore the closure properties and computational complexity of these classes, including undecidability and L-, NL- and NP-completeness results. We apply these classes to cellular automata, in particular to their sets of fixed and periodic points, finite-time images, and limit sets. We show that it is undecidable whether a CA in d >= 2 has a periodic point of a given period, and that certain ``local lattice languages'' are not finite-time images or limit sets of any CA. We also show that the entropy of a d-dimensional CA's finite-time image cannot decrease faster than t^{-d} unless it maps every initial condition to a single homogeneous state.Comment: To appear in J. Stat. Phy

    On the boundaries of solvability and unsolvability in tag systems. Theoretical and Experimental Results

    Get PDF
    Several older and more recent results on the boundaries of solvability and unsolvability in tag systems are surveyed. Emphasis will be put on the significance of computer experiments in research on very small tag systems

    Decidability and Universality in Symbolic Dynamical Systems

    Full text link
    Many different definitions of computational universality for various types of dynamical systems have flourished since Turing's work. We propose a general definition of universality that applies to arbitrary discrete time symbolic dynamical systems. Universality of a system is defined as undecidability of a model-checking problem. For Turing machines, counter machines and tag systems, our definition coincides with the classical one. It yields, however, a new definition for cellular automata and subshifts. Our definition is robust with respect to initial condition, which is a desirable feature for physical realizability. We derive necessary conditions for undecidability and universality. For instance, a universal system must have a sensitive point and a proper subsystem. We conjecture that universal systems have infinite number of subsystems. We also discuss the thesis according to which computation should occur at the `edge of chaos' and we exhibit a universal chaotic system.Comment: 23 pages; a shorter version is submitted to conference MCU 2004 v2: minor orthographic changes v3: section 5.2 (collatz functions) mathematically improved v4: orthographic corrections, one reference added v5:27 pages. Important modifications. The formalism is strengthened: temporal logic replaced by finite automata. New results. Submitte

    Undecidability of the Spectral Gap (full version)

    Full text link
    We show that the spectral gap problem is undecidable. Specifically, we construct families of translationally-invariant, nearest-neighbour Hamiltonians on a 2D square lattice of d-level quantum systems (d constant), for which determining whether the system is gapped or gapless is an undecidable problem. This is true even with the promise that each Hamiltonian is either gapped or gapless in the strongest sense: it is promised to either have continuous spectrum above the ground state in the thermodynamic limit, or its spectral gap is lower-bounded by a constant in the thermodynamic limit. Moreover, this constant can be taken equal to the local interaction strength of the Hamiltonian.Comment: v1: 146 pages, 56 theorems etc., 15 figures. See shorter companion paper arXiv:1502.04135 (same title and authors) for a short version omitting technical details. v2: Small but important fix to wording of abstract. v3: Simplified and shortened some parts of the proof; minor fixes to other parts. Now only 127 pages, 55 theorems etc., 10 figures. v4: Minor updates to introductio

    Calibrating Generative Models: The Probabilistic Chomsky-SchĂĽtzenberger Hierarchy

    Get PDF
    A probabilistic Chomsky–Schützenberger hierarchy of grammars is introduced and studied, with the aim of understanding the expressive power of generative models. We offer characterizations of the distributions definable at each level of the hierarchy, including probabilistic regular, context-free, (linear) indexed, context-sensitive, and unrestricted grammars, each corresponding to familiar probabilistic machine classes. Special attention is given to distributions on (unary notations for) positive integers. Unlike in the classical case where the "semi-linear" languages all collapse into the regular languages, using analytic tools adapted from the classical setting we show there is no collapse in the probabilistic hierarchy: more distributions become definable at each level. We also address related issues such as closure under probabilistic conditioning

    A Computation in a Cellular Automaton Collider Rule 110

    Full text link
    A cellular automaton collider is a finite state machine build of rings of one-dimensional cellular automata. We show how a computation can be performed on the collider by exploiting interactions between gliders (particles, localisations). The constructions proposed are based on universality of elementary cellular automaton rule 110, cyclic tag systems, supercolliders, and computing on rings.Comment: 39 pages, 32 figures, 3 table
    • …
    corecore