4,248 research outputs found

    Piecewise-Linear Farthest-Site Voronoi Diagrams

    Get PDF
    Voronoi diagrams induced by distance functions whose unit balls are convex polyhedra are piecewise-linear structures. Nevertheless, analyzing their combinatorial and algorithmic properties in dimensions three and higher is an intriguing problem. The situation turns easier when the farthest-site variants of such Voronoi diagrams are considered, where each site gets assigned the region of all points in space farthest from (rather than closest to) it. We give asymptotically tight upper and lower worst-case bounds on the combinatorial size of farthest-site Voronoi diagrams for convex polyhedral distance functions in general dimensions, and propose an optimal construction algorithm. Our approach is uniform in the sense that (1) it can be extended from point sites to sites that are convex polyhedra, (2) it covers the case where the distance function is additively and/or multiplicatively weighted, and (3) it allows an anisotropic scenario where each site gets allotted its particular convex distance polytope

    New Results on Abstract Voronoi Diagrams

    Get PDF
    Voronoi diagrams are a fundamental structure used in many areas of science. For a given set of objects, called sites, the Voronoi diagram separates the plane into regions, such that points belonging to the same region have got the same nearest site. This definition clearly depends on the type of given objects, they may be points, line segments, polygons, etc. and the distance measure used. To free oneself from these geometric notions, Klein introduced abstract Voronoi diagrams as a general construct covering many concrete Voronoi diagrams. Abstract Voronoi diagrams are based on a system of bisecting curves, one for each pair of abstract sites, separating the plane into two dominance regions, belonging to one site each. The intersection of all dominance regions belonging to one site p defines its Voronoi region. The system of bisecting curves is required to fulfill only some simple combinatorial properties, like Voronoi regions to be connected, the union of their closures cover the whole plane, and the bisecting curves are unbounded. These assumptions are enough to show that an abstract Voronoi diagram of n sites is a planar graph of complexity O(n) and can be computed in expected time O(n log n) by a randomized incremental construction. In this thesis we widen the notion of abstract Voronoi diagrams in several senses. One step is to allow disconnected Voronoi regions. We assume that in a diagram of a subset of three sites each Voronoi region may consist of at most s connected components, for a constant s, and show that the diagram can be constructed in expected time O(s2 n ∑3 ≤ j ≤ n mj / j), where mj is the expected number of connected components of a Voronoi region over all diagrams of a subset of j sites. The case that all Voronoi regions are connected is a subcase, where this algorithm performs in optimal O(n log n) time, because here s = mj =1. The next step is to additionally allow bisecting curves to be closed. We present an algorithm constructing such diagrams which runs in expected time O(s2 n log(max{s,n}) ∑2 ≤ j≤ n mj / j). This algorithm is slower by a log n-factor compared to the one for disconnected regions and unbounded bisectors. The extra time is necessary to be able to handle special phenomenons like islands, where a Voronoi region is completely surrounded by another region, something that can occur only when bisectors are closed. However, this algorithm solves many open problems and improves the running time of some existing algorithms, for example for the farthest Voronoi diagram of n simple polygons of constant complexity. Another challenge was to study higher order abstract Voronoi diagrams. In the concrete sense of an order-k Voronoi diagram points are collected in the same Voronoi region, if they have the same k nearest sites. By suitably intersecting the dominance regions this can be defined also for abstract Voronoi diagrams. The question arising is about the complexity of an order-k Voronoi diagram. There are many subsets of size k but fortunately many of them have an empty order-k region. For point sites it has already been shown that there can be at most O(k (n-k)) many regions and even though order-k regions may be disconnected when considering line segments, still the complexity of the order-k diagram remains O(k(n-k)). The proofs used to show this strongly depended on the geometry of the sites and the distance measure, and were thus not applicable for our abstract higher order Voronoi diagrams. The proofs used to show this strongly depended on the geometry of the sites and the distance measure, and were thus not applicable for our abstract higher order Voronoi diagrams. Nevertheless, we were able to come up with proofs of purely topological and combinatorial nature of Jordan curves and certain permutation sequences, and hence we could show that also the order-k abstract Voronoi diagram has complexity O(k (n-k)), assuming that bisectors are unbounded, and the order-1 regions are connected. Finally, we discuss Voronoi diagrams having the shape of a tree or forest. Aggarwal et. al. showed that if points are in convex position, then given their ordering along the convex hull, their Voronoi diagram, which is a tree, can be computed in linear time. Klein and Lingas have generalized this idea to Hamiltonian abstract Voronoi diagrams, where a curve is given, intersecting each Voronoi region with respect to any subset of sites exactly once. If the ordering of the regions along the curve is known in advance, all Voronoi regions are connected, and all bisectors are unbounded, then the abstract Voronoi diagram can be computed in linear time. This algorithm also applies to diagrams which are trees for all subsets of sites and the ordering of the unbounded regions around the diagram is known. In this thesis we go one step further and allow the diagram to be a forest for subsets of sites as long as the complete diagram is a tree. We show that also these diagrams can be computed in linear time

    On the Complexity of Randomly Weighted Voronoi Diagrams

    Full text link
    In this paper, we provide an O(npolylogn)O(n \mathrm{polylog} n) bound on the expected complexity of the randomly weighted Voronoi diagram of a set of nn sites in the plane, where the sites can be either points, interior-disjoint convex sets, or other more general objects. Here the randomness is on the weight of the sites, not their location. This compares favorably with the worst case complexity of these diagrams, which is quadratic. As a consequence we get an alternative proof to that of Agarwal etal [AHKS13] of the near linear complexity of the union of randomly expanded disjoint segments or convex sets (with an improved bound on the latter). The technique we develop is elegant and should be applicable to other problems

    Farthest-Polygon Voronoi Diagrams

    Get PDF
    Given a family of k disjoint connected polygonal sites in general position and of total complexity n, we consider the farthest-site Voronoi diagram of these sites, where the distance to a site is the distance to a closest point on it. We show that the complexity of this diagram is O(n), and give an O(n log^3 n) time algorithm to compute it. We also prove a number of structural properties of this diagram. In particular, a Voronoi region may consist of k-1 connected components, but if one component is bounded, then it is equal to the entire region

    Stable-Matching Voronoi Diagrams: Combinatorial Complexity and Algorithms

    Get PDF
    We study algorithms and combinatorial complexity bounds for stable-matching Voronoi diagrams, where a set, S, of n point sites in the plane determines a stable matching between the points in R^2 and the sites in S such that (i) the points prefer sites closer to them and sites prefer points closer to them, and (ii) each site has a quota indicating the area of the set of points that can be matched to it. Thus, a stable-matching Voronoi diagram is a solution to the classic post office problem with the added (realistic) constraint that each post office has a limit on the size of its jurisdiction. Previous work provided existence and uniqueness proofs, but did not analyze its combinatorial or algorithmic complexity. We show that a stable-matching Voronoi diagram of n sites has O(n^{2+epsilon}) faces and edges, for any epsilon>0, and show that this bound is almost tight by giving a family of diagrams with Theta(n^2) faces and edges. We also provide a discrete algorithm for constructing it in O(n^3+n^2f(n)) time, where f(n) is the runtime of a geometric primitive that can be performed in the real-RAM model or can be approximated numerically. This is necessary, as the diagram cannot be computed exactly in an algebraic model of computation

    Bregman Voronoi Diagrams: Properties, Algorithms and Applications

    Get PDF
    The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define many variants of Voronoi diagrams depending on the class of objects, the distance functions and the embedding space. In this paper, we investigate a framework for defining and building Voronoi diagrams for a broad class of distance functions called Bregman divergences. Bregman divergences include not only the traditional (squared) Euclidean distance but also various divergence measures based on entropic functions. Accordingly, Bregman Voronoi diagrams allow to define information-theoretic Voronoi diagrams in statistical parametric spaces based on the relative entropy of distributions. We define several types of Bregman diagrams, establish correspondences between those diagrams (using the Legendre transformation), and show how to compute them efficiently. We also introduce extensions of these diagrams, e.g. k-order and k-bag Bregman Voronoi diagrams, and introduce Bregman triangulations of a set of points and their connexion with Bregman Voronoi diagrams. We show that these triangulations capture many of the properties of the celebrated Delaunay triangulation. Finally, we give some applications of Bregman Voronoi diagrams which are of interest in the context of computational geometry and machine learning.Comment: Extend the proceedings abstract of SODA 2007 (46 pages, 15 figures
    • …
    corecore