1,231 research outputs found

    Shared inputs, entrainment, and desynchrony in elliptic bursters: from slow passage to discontinuous circle maps

    Full text link
    What input signals will lead to synchrony vs. desynchrony in a group of biological oscillators? This question connects with both classical dynamical systems analyses of entrainment and phase locking and with emerging studies of stimulation patterns for controlling neural network activity. Here, we focus on the response of a population of uncoupled, elliptically bursting neurons to a common pulsatile input. We extend a phase reduction from the literature to capture inputs of varied strength, leading to a circle map with discontinuities of various orders. In a combined analytical and numerical approach, we apply our results to both a normal form model for elliptic bursting and to a biophysically-based neuron model from the basal ganglia. We find that, depending on the period and amplitude of inputs, the response can either appear chaotic (with provably positive Lyaponov exponent for the associated circle maps), or periodic with a broad range of phase-locked periods. Throughout, we discuss the critical underlying mechanisms, including slow-passage effects through Hopf bifurcation, the role and origin of discontinuities, and the impact of noiseComment: 17 figures, 40 page

    Trapping Phenomenon Attenuates the Consequences of Tipping Points for Limit Cycles

    Get PDF
    We would like to thank the partial support of this work by the Brazilian agencies FAPESP (processes: 2011/19296-1, 2013/26598-0, and 2015/20407-3), CNPq and CAPES. MSB acknowledges EPSRC Ref. EP/I032606/1.Peer reviewedPublisher PD

    Mini-Workshop: Dynamics of Stochastic Systems and their Approximation

    Get PDF
    The aim of this workshop was to bring together specialists in the area of stochastic dynamical systems and stochastic numerical analysis to exchange their ideas about the state of the art of approximations of stochastic dynamics. Here approximations are considered in the analytical sense in terms of deriving reduced dynamical systems, which are less complex, as well as in the numerical sense via appropriate simulation methods. The main theme is concerned with the efficient treatment of stochastic dynamical systems via both approaches assuming that ideas and methods from one ansatz may prove beneficial for the other. A particular goal was to systematically identify open problems and challenges in this area

    From random Poincar\'e maps to stochastic mixed-mode-oscillation patterns

    Full text link
    We quantify the effect of Gaussian white noise on fast--slow dynamical systems with one fast and two slow variables, which display mixed-mode oscillations owing to the presence of a folded-node singularity. The stochastic system can be described by a continuous-space, discrete-time Markov chain, recording the returns of sample paths to a Poincar\'e section. We provide estimates on the kernel of this Markov chain, depending on the system parameters and the noise intensity. These results yield predictions on the observed random mixed-mode oscillation patterns. Our analysis shows that there is an intricate interplay between the number of small-amplitude oscillations and the global return mechanism. In combination with a local saturation phenomenon near the folded node, this interplay can modify the number of small-amplitude oscillations after a large-amplitude oscillation. Finally, sufficient conditions are derived which determine when the noise increases the number of small-amplitude oscillations and when it decreases this number.Comment: 56 pages, 14 figures; revised versio
    • …
    corecore