9,676 research outputs found

    2-D angle of arrival estimation using a one-dimensional antenna array

    Get PDF
    In this paper, a two-dimensional (2-D) angle of arrival (AOA) estimator is presented for vertically polarised waves in which a one-dimensional (1-D) antenna array is used. Many 2-D AOA estimators were previously developed to estimate elevation and azimuth angles. These estimators require a 2-D antenna array setup such as the L-shaped or parallel antenna 1-D arrays. In this paper a 2-D AOA estimator is presented which requires only a 1-D antenna array. This presented method is named Estimation of 2-D Angle of arrival using Reduced antenna array dimension (EAR). The EAR estimator utilises the antenna radiation pattern factor to reduce the required antenna array dimensionality. Thus, 2-D AOA estimation is possible using antenna arrays of reduced size and with a minimum of two elements only, which is very beneficial in applications with size and space limitations. Simulation results are presented to show the performance of the presented method

    Multipath and interference errors reduction in gps using antenna arrays

    Get PDF
    The Global Positioning System (GPS) is a worldwide satellite based positioning system that provides any user with tridimensional position, speed and time information. The measured pseudorange is affected by the multipath propagation, which probably is the major source of errors for high precision systems. After a presentation of the GPS and the basic techniques employed to perform pseudorange measurements, the influence of the multipath components on the pseudorange measurement is explained. Like every system the GPS is also exposed to the errors that can be caused by the interferences, and a lot of civil applications need robust receivers to interferences for reasons of safety. In this paper some signal array processing techniques for reducing the code measurement errors due to the multipath propagation and the interferences are presented. Firstly, a non-adaptive beamforming is used. Secondly, a variant of the MUSIC and the maximum likelihood estimator can be used to estimate the DOA of the reflections and the interferences, and then a weight vector that removes these signals is calculated. In the third place, a beamforming with temporal reference is presented; the reference is not the GPS signal itself, but the output of a matched filter to the code. An interesting feature of the proposed techniques is that they can be applied to an array of arbitrary geometry.Peer ReviewedPostprint (published version

    Modelling Aspects of Planar Multi-Mode Antennas for Direction-of-Arrival Estimation

    Get PDF
    Multi-mode antennas are an alternative to classical antenna arrays, and hence a promising emerging sensor technology for a vast variety of applications in the areas of array signal processing and digital communications. An unsolved problem is to describe the radiation pattern of multi-mode antennas in closed analytic form based on calibration measurements or on electromagnetic field (EMF) simulation data. As a solution, we investigate two modeling methods: One is based on the array interpolation technique (AIT), the other one on wavefield modeling (WM). Both methods are able to accurately interpolate quantized EMF data of a given multi-mode antenna, in our case a planar four-port antenna developed for the 6-8.5 GHz range. Since the modeling methods inherently depend on parameter sets, we investigate the influence of the parameter choice on the accuracy of both models. Furthermore, we evaluate the impact of modeling errors for coherent maximum-likelihood direction-of-arrival (DoA) estimation given different model parameters. Numerical results are presented for a single polarization component. Simulations reveal that the estimation bias introduced by model errors is subject to the chosen model parameters. Finally, we provide optimized sets of AIT and WM parameters for the multi-mode antenna under investigation. With these parameter sets, EMF data samples can be reproduced in interpolated form with high angular resolution

    Efficient AoA-based wireless indoor localization for hospital outpatients using mobile devices

    Get PDF
    The motivation of this work is to help outpatients find their corresponding departments or clinics, thus, it needs to provide indoor positioning services with a room-level accuracy. Unlike wireless outdoor localization that is dominated by the global positioning system (GPS), wireless indoor localization is still an open issue. Many different schemes are being developed to meet the increasing demand for indoor localization services. In this paper, we investigated the AoA-based wireless indoor localization for outpatients’ wayfinding in a hospital, where Wi-Fi access points (APs) are deployed, in line, on the ceiling. The target position can be determined by a mobile device, like a smartphone, through an efficient geometric calculation with two known APs coordinates and the angles of the incident radios. All possible positions in which the target may appear have been comprehensively investigated, and the corresponding solutions were proven to be the same. Experimental results show that localization error was less than 2.5 m, about 80% of the time, which can satisfy the outpatients’ requirements for wayfinding
    • …
    corecore