97 research outputs found

    Fast algorithms for ill-conditioned dense matrix problems in VLSI interconnect and substrate modeling

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.Includes bibliographical references (leaves 131-135).by Mike Chuan Chou.Ph.D

    Deformable meshes for shape recovery: models and applications

    Get PDF
    With the advance of scanning and imaging technology, more and more 3D objects become available. Among them, deformable objects have gained increasing interests. They include medical instances such as organs, a sequence of objects in motion, and objects of similar shapes where a meaningful correspondence can be established between each other. Thus, it requires tools to store, compare, and retrieve them. Many of these operations depend on successful shape recovery. Shape recovery is the task to retrieve an object from the environment where its geometry is hidden or implicitly known. As a simple and versatile tool, mesh is widely used in computer graphics for modelling and visualization. In particular, deformable meshes are meshes which can take the deformation of deformable objects. They extend the modelling ability of meshes. This dissertation focuses on using deformable meshes to approach the 3D shape recovery problem. Several models are presented to solve the challenges for shape recovery under different circumstances. When the object is hidden in an image, a PDE deformable model is designed to extract its surface shape. The algorithm uses a mesh representation so that it can model any non-smooth surface with an arbitrary precision compared to a parametric model. It is more computational efficient than a level-set approach. When the explicit geometry of the object is known but is hidden in a bank of shapes, we simplify the deformation of the model to a graph matching procedure through a hierarchical surface abstraction approach. The framework is used for shape matching and retrieval. This idea is further extended to retain the explicit geometry during the abstraction. A novel motion abstraction framework for deformable meshes is devised based on clustering of local transformations and is successfully applied to 3D motion compression

    Signal processing for high-definition television

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1995.Includes bibliographical references (p. 60-62).by Peter Monta.Ph.D

    Study of compression techniques for partial differential equation solvers

    Get PDF
    Partial Differential Equations (PDEs) are widely applied in many branches of science, and solving them efficiently, from a computational point of view, is one of the cornerstones of modern computational science. The finite element (FE) method is a popular numerical technique for calculating approximate solutions to PDEs. A not necessarily complex finite element analysis containing substructures can easily gen-erate enormous quantities of elements that hinder and slow down simulations. Therefore, compression methods are required to decrease the amount of computational effort while retaining the significant dynamics of the problem. In this study, it was decided to apply a purely algebraic approach. Various methods will be included and discussed, ranging from research-level techniques to other apparently unrelated fields like image compression, via the discrete Fourier transform (DFT) and the Wavelet transform or the Singular Value Decomposition (SVD)

    Multiscale Spectral-Domain Parameterization for History Matching in Structured and Unstructured Grid Geometries

    Get PDF
    Reservoir model calibration to production data, also known as history matching, is an essential tool for the prediction of fluid displacement patterns and related decisions concerning reservoir management and field development. The history matching of high resolution geologic models is, however, known to define an ill-posed inverse problem such that the solution of geologic heterogeneity is always non-unique and potentially unstable. A common approach to improving ill-posedness is to parameterize the estimable geologic model components, imposing a type of regularization that exploits geologic continuity by explicitly or implicitly grouping similar properties while retaining at least the minimum heterogeneity resolution required to reproduce the data. This dissertation develops novel methods of model parameterization within the class of techniques based on a linear transformation. Three principal research contributions are made in this dissertation. First is the development of an adaptive multiscale history matching formulation in the frequency domain using the discrete cosine parameterization. Geologic model calibration is performed by its sequential refinement to a spatial scale sufficient to match the data. The approach enables improvement in solution non-uniqueness and stability, and further balances model and data resolution as determined by a parameter identifiability metric. Second, a model-independent parameterization based on grid connectivity information is developed as a generalization of the cosine parameterization for applicability to generic grid geometries. The parameterization relates the spatial reservoir parameters to the modal shapes or harmonics of the grid on which they are defined, merging with a Fourier analysis in special cases (i.e., for rectangular grid cells of constant dimensions), and enabling a multiscale calibration of the reservoir model in the spectral domain. Third, a model-dependent parameterization is developed to combine grid connectivity with prior geologic information within a spectral domain representation. The resulting parameterization is capable of reducing geologic models while imposing prior heterogeneity on the calibrated model using the adaptive multiscale workflow. In addition to methodological developments of the parameterization methods, an important consideration in this dissertation is their applicability to field scale reservoir models with varying levels of prior geologic complexity on par with current industry standards
    • …
    corecore