4,163 research outputs found

    1st workshop on situational awareness in semi-Automated vehicles

    Get PDF
    This workshop will focus on the problem of occupant and vehicle situational awareness with respect to automated vehicles when the driver must take over control. It will explore the future of fully automated and mixed traffic situations where vehicles are assumed to be operating at level 3 or above. In this case, all critical driving functions will be handled by the vehicle with the possibility of transitions between manual and automated driving modes at any time. This creates a driver environment where, unlike manual driving, there is no direct intrinsic motivation for the driver to be aware of the traffic situation at all times. Therefore, it is highly likely that when such a transition occurs, the driver will not be able to transition either safely or within an appropriate period of time. This workshop will address this challenge by inviting experts and practitioners from the automotive and related domains to explore concepts and solutions to increase, maintain and transfer situational awareness in semi-Automated vehicles.The organisers acknowledge the financial assistance provided under a range of projects from FNR Luxembourg (CS14/IS/8301419) and FWF Austria (I 2126-N15

    Interacting with Autonomous Vehicles: Learning from other Domains

    Get PDF
    The rise of evermore autonomy in vehicles and the expected introduction of self-driving cars have led to a focus on human interactions with such systems from an HCI perspective over the last years. Automotive User Interface researchers have been investigating issues such as transition control procedures, shared control, (over)trust, and overall user experience in automated vehicles. Now, it is time to open the research field of automated driving to other CHI research fields, such as Human-Robot-Interaction (HRI), aeronautics and space, conversational agents, or smart devices. These communities have been dealing with the interplay between humans and automated systems for more than 30 years. In this workshop, we aim to provide a forum to discuss what can be learnt from other domains for the design of autonomous vehicles. Interaction design problems that occur in these domains, such as transition control procedures, how to build trust in the system, and ethics will be discussed

    Integrative Use of Information Extraction, Semantic Matchmaking and Adaptive Coupling Techniques in Support of Distributed Information Processing and Decision-Making

    No full text
    In order to press maximal cognitive benefit from their social, technological and informational environments, military coalitions need to understand how best to exploit available information assets as well as how best to organize their socially-distributed information processing activities. The International Technology Alliance (ITA) program is beginning to address the challenges associated with enhanced cognition in military coalition environments by integrating a variety of research and development efforts. In particular, research in one component of the ITA ('Project 4: Shared Understanding and Information Exploitation') is seeking to develop capabilities that enable military coalitions to better exploit and distribute networked information assets in the service of collective cognitive outcomes (e.g. improved decision-making). In this paper, we provide an overview of the various research activities in Project 4. We also show how these research activities complement one another in terms of supporting coalition-based collective cognition

    Sense-Assess-eXplain (SAX): Building Trust in Autonomous Vehicles in Challenging Real-World Driving Scenarios

    Get PDF
    This paper discusses ongoing work in demonstrating research in mobile autonomy in challenging driving scenarios. In our approach, we address fundamental technical issues to overcome critical barriers to assurance and regulation for large-scale deployments of autonomous systems. To this end, we present how we build robots that (1) can robustly sense and interpret their environment using traditional as well as unconventional sensors; (2) can assess their own capabilities; and (3), vitally in the purpose of assurance and trust, can provide causal explanations of their interpretations and assessments. As it is essential that robots are safe and trusted, we design, develop, and demonstrate fundamental technologies in real-world applications to overcome critical barriers which impede the current deployment of robots in economically and socially important areas. Finally, we describe ongoing work in the collection of an unusual, rare, and highly valuable dataset.Comment: accepted for publication at the IEEE Intelligent Vehicles Symposium (IV), Workshop on Ensuring and Validating Safety for Automated Vehicles (EVSAV), 2020, project URL: https://ori.ox.ac.uk/projects/sense-assess-explain-sa

    A Realistic Simulation for Swarm UAVs and Performance Metrics for Operator User Interfaces

    Get PDF
    Robots have been utilized to support disaster mitigation missions through exploration of areas that are either unreachable or hazardous for human rescuers [1]. The great potential for robotics in disaster mitigation has been recognized by the research community and during the last decade, a lot of research has been focused on developing robotic systems for this purpose. In this thesis, we present a description of the usage and classification of UAVs and performance metrics that affect controlling of UAVs. We also present new contributions to the UAV simulator developed by ECSL and RRL: the integration of flight dynamics of Hummingbird quadcopter, and distance optimization using a Genetic algorithm

    Operator Objective Function Guidance for a Real-time Unmanned Vehicle Scheduling Algorithm

    Get PDF
    Advances in autonomy have made it possible to invert the typical operator-to-unmanned-vehicle ratio so that asingle operator can now control multiple heterogeneous unmanned vehicles. Algorithms used in unmanned-vehicle path planning and task allocation typically have an objective function that only takes into account variables initially identified by designers with set weightings. This can make the algorithm seemingly opaque to an operator and brittle under changing mission priorities. To address these issues, it is proposed that allowing operators to dynamically modify objective function weightings of an automated planner during a mission can have performance benefits. A multiple-unmanned-vehicle simulation test bed was modified so that operators could either choose one variable or choose any combination of equally weighted variables for the automated planner to use in evaluating mission plans. Results from a human-participant experiment showed that operators rated their performance and confidence highest when using the dynamic objective function with multiple objectives. Allowing operators to adjust multiple objectives resulted in enhanced situational awareness, increased spare mental capacity, fewer interventions to modify the objective function, and no significant differences in mission performance. Adding this form of flexibility and transparency to automation in future unmanned vehicle systems could improve performance, engender operator trust, and reduce errors.Aurora Flight Sciences, U.S. Office of Naval Researc

    Context-Adaptive Management of Drivers’ Trust in Automated Vehicles

    Full text link
    Automated vehicles (AVs) that intelligently interact with drivers must build a trustworthy relationship with them. A calibrated level of trust is fundamental for the AV and the driver to collaborate as a team. Techniques that allow AVs to perceive drivers’ trust from drivers’ behaviors and react accordingly are, therefore, needed for context-aware systems designed to avoid trust miscalibrations. This letter proposes a framework for the management of drivers’ trust in AVs. The framework is based on the identification of trust miscalibrations (when drivers’ undertrust or overtrust the AV) and on the activation of different communication styles to encourage or warn the driver when deemed necessary. Our results show that the management framework is effective, increasing (decreasing) trust of undertrusting (overtrusting) drivers, and reducing the average trust miscalibration time periods by approximately 40%. The framework is applicable for the design of SAE Level 3 automated driving systems and has the potential to improve the performance and safety of driver–AV teams.U.S. Army CCDC/GVSCAutomotive Research CenterNational Science FoundationPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162571/1/Azevedo-Sa et al. 2020 with doi.pdfSEL

    The Next Generation of Human-Drone Partnerships: Co-Designing an Emergency Response System

    Full text link
    The use of semi-autonomous Unmanned Aerial Vehicles (UAV) to support emergency response scenarios, such as fire surveillance and search and rescue, offers the potential for huge societal benefits. However, designing an effective solution in this complex domain represents a "wicked design" problem, requiring a careful balance between trade-offs associated with drone autonomy versus human control, mission functionality versus safety, and the diverse needs of different stakeholders. This paper focuses on designing for situational awareness (SA) using a scenario-driven, participatory design process. We developed SA cards describing six common design-problems, known as SA demons, and three new demons of importance to our domain. We then used these SA cards to equip domain experts with SA knowledge so that they could more fully engage in the design process. We designed a potentially reusable solution for achieving SA in multi-stakeholder, multi-UAV, emergency response applications.Comment: 10 Pages, 5 Figures, 2 Tables. This article is publishing in CHI202

    How to keep drivers engaged while supervising driving automation? A literature survey and categorization of six solution areas

    Get PDF
    This work aimed to organise recommendations for keeping people engaged during human supervision of driving automation, encouraging a safe and acceptable introduction of automated driving systems. First, heuristic knowledge of human factors, ergonomics, and psychological theory was used to propose solution areas to human supervisory control problems of sustained attention. Driving and non-driving research examples were drawn to substantiate the solution areas. Automotive manufacturers might (1) avoid this supervisory role altogether, (2) reduce it in objective ways or (3) alter its subjective experiences, (4) utilize conditioning learning principles such as with gamification and/or selection/training techniques, (5) support internal driver cognitive processes and mental models and/or (6) leverage externally situated information regarding relations between the driver, the driving task, and the driving environment. Second, a cross-domain literature survey of influential human-automation interaction research was conducted for how to keep engagement/attention in supervisory control. The solution areas (via numeric theme codes) were found to be reliably applied from independent rater categorisations of research recommendations. Areas (5) and (6) were addressed by around 70% or more of the studies, areas (2) and (4) in around 50% of the studies, and areas (3) and (1) in less than around 20% and 5%, respectively. The present contribution offers a guiding organisational framework towards improving human attention while supervising driving automation.submittedVersio

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio
    corecore