32 research outputs found

    MODELLING VIRTUAL ENVIRONMENT FOR ADVANCED NAVAL SIMULATION

    Get PDF
    This thesis proposes a new virtual simulation environment designed as element of an interoperable federation of simulator to support the investigation of complex scenarios over the Extended Maritime Framework (EMF). Extended Maritime Framework is six spaces environment (Underwater, Water surface, Ground, Air, Space, and Cyberspace) where parties involved in Joint Naval Operations act. The amount of unmanned vehicles involved in the simulation arise the importance of the Communication modelling, thus the relevance of Cyberspace. The research is applied to complex cases (one applied to deep waters and one to coast and littoral protection) as examples to validate this approach; these cases involve different kind of traditional assets (e.g. satellites, helicopters, ships, submarines, underwater sensor infrastructure, etc.) interact dynamically and collaborate with new autonomous systems (i.e. AUV, Gliders, USV and UAV). The use of virtual simulation is devoted to support validation of new concepts and investigation of collaborative engineering solutions by providing a virtual representation of the current situation; this approach support the creation of dynamic interoperable immersive framework that could support training for Man in the Loop, education and tactical decision introducing the Man on the Loop concepts. The research and development of the Autonomous Underwater Vehicles requires continuous testing so a time effective approach can result a very useful tool. In this context the simulation can be useful to better understand the behaviour of Unmanned Vehicles and to avoid useless experimentations and their costs finding problems before doing them. This research project proposes the creation of a virtual environment with the aim to see and understand a Joint Naval Scenario. The study will be focusing especially on the integration of Autonomous Systems with traditional assets; the proposed simulation deals especially with collaborative operation involving different types of Autonomous Underwater Vehicles (AUV), Unmanned Surface Vehicles (USV) and UAV (Unmanned Aerial Vehicle). The author develops an interoperable virtual simulation devoted to present the overall situation for supervision considering also the sensor capabilities, communications and mission effectiveness that results dependent of the different asset interaction over a complex heterogeneous network. The aim of this research is to develop a flexible virtual simulation solution as crucial element of an HLA federation able to address the complexity of Extended Maritime Framework (EMF). Indeed this new generation of marine interoperable simulation is a strategic advantage for investigating the problems related to the operational use of autonomous systems and to finding new ways to use them respect to different scenarios. The research deal with the creation of two scenarios, one related to military operations and another one on coastal and littoral protection where the virtual simulation propose the overall situation and allows to navigate into the virtual world considering the complex physics affecting movement, perception, interaction and communication. By this approach, it becomes evident the capability to identify, by experimental analysis within the virtual world, the new solutions in terms of engineering and technological configuration of the different systems and vehicles as well as new operational models and tactics to address the specific mission environment. The case of study is a maritime scenario with a representation of heterogeneous network frameworks that involves multiple vehicles both naval and aerial including AUVs, USVs, gliders, helicopter, ships, submarines, satellite, buoys and sensors. For the sake of clarity aerial communications will be represented divided from underwater ones. A connection point for the latter will be set on the keel line of surface vessels representing communication happening via acoustic modem. To represent limits in underwater communications, underwater signals have been considerably slowed down in order to have a more realistic comparison with aerial ones. A maximum communication distance is set, beyond which no communication can take place. To ensure interoperability the HLA Standard (IEEE 1516 evolved) is adopted to federate other simulators so to allow its extensibility for other case studies. Two different scenarios are modelled in 3D visualization: Open Water and Port Protection. The first one aims to simulate interactions between traditional assets in Extended Maritime Framework (EMF) such as satellite, navy ships, submarines, NATO Research Vessels (NRVs), helicopters, with new generation unmanned assets as AUV, Gliders, UAV, USV and the mutual advantage the subjects involved in the scenario can have; in other word, the increase in persistence, interoperability and efficacy. The second scenario models the behaviour of unmanned assets, an AUV and an USV, patrolling a harbour to find possible threats. This aims to develop an algorithm to lead patrolling path toward an optimum, guaranteeing a high probability of success in the safest way reducing human involvement in the scenario. End users of the simulation face a graphical 3D representation of the scenario where assets would be represented. He can moves in the scenario through a Free Camera in Graphic User Interface (GUI) configured to entitle users to move around the scene and observe the 3D sea scenario. In this way, players are able to move freely in the synthetic environment in order to choose the best perspective of the scene. The work is intended to provide a valid tool to evaluate the defencelessness of on-shore and offshore critical infrastructures that could includes the use of new technologies to take care of security best and preserve themselves against disasters both on economical and environmental ones

    Eight Biennial Report : April 2005 – March 2007

    No full text

    SMART - IWRM - Sustainable Management of Available Water Resources with Innovative Technologies - Integrated Water Resources Management in the Lower Jordan Rift Valley : Final Report Phase II (KIT Scientific Reports ; 7698)

    Get PDF
    SMART was a multi-lateral research project with partners from Germany, Israel, Jordan and the Palestinian Territories. The overall goal was to develop a transferable approach for Integrated Water Resources Management (IWRM) in the water shortage region of the Lower Jordan Valley. The innovative aspect addressed all available water resources: groundwater and surface waters, but also wastewater, brackish water and flood water that need to be treated for use

    Collected Papers in Structural Mechanics Honoring Dr. James H. Starnes, Jr.

    Get PDF
    This special publication contains a collection of structural mechanics papers honoring Dr. James H. Starnes, Jr. presented at the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference held in Austin, Texas, April 18-21, 2005. Contributors to this publication represent a small number of those influenced by Dr. Starnes' technical leadership, his technical prowess and diversity, and his technical breath and depth in engineering mechanics. These papers cover some of the research areas Dr. Starnes investigated, which included buckling, postbuckling, and collapse of structures; composite structural mechanics, residual strength and damage tolerance of metallic and composite structures; and aircraft structural design, certification and verification. He actively pursued technical understanding and clarity, championed technical excellence, and modeled humility and perseverance

    Photonic skin based on polymer embedding of optical sensors and interrogation units

    Get PDF

    Legionella Contamination in Water Environment

    Get PDF
    Legionella spp. are ubiquitous microorganisms that are widely distributed in aquatic environments. Water systems of large buildings, such as hospitals, hotels, and rental units are often contaminated by legionellae and various parameters such as physical, chemical, and microbial building water system characteristics can influence Legionella occurrence. A range of physical and chemical disinfection methods have been proposed to control Legionella contamination; however, to date, the most effective procedures have not been defined. There is a need to survey legionellae in water systems to prevent legionellosis. Although the assessment of L. pneumophila in water is typically performed by culture isolation on selective media, it has several limits. For this reason, alternative tools for rapid, sensitive, and specific detection of Legionella in water samples have been proposed. In order to increase knowledge on different aspects of Legionella contamination in the water environment, this book gathers research studies related to the occurrence of Legionella in water systems of different environments; the role of different factors that can influence the Legionella contamination, as well as the advantages and disadvantages of different methodological approaches

    Automated evolutionary design of self-assembly and self-organising systems

    Get PDF
    Self-assembly and self-organisation are natural construction processes where the spontaneous formation of aggregates emerges throughout the progressive interplay of local interactions among its constituents. Made upon cooperative self-reliant components, self-assembly and self-organising systems are seen as distributed, not necessarily synchronous, autopoietic mechanisms for the bottom-up fabrication of supra-structures. The systematic understanding of how nature endows these autonomous components with sufficient ''intelligence'' to combine themselves to form useful aggregates brings challenging questions to science, answers to which have many potential applications in matters of life and technological advances. It is for this reason that the investigation to be presented along this thesis focuses on the automated design of self-assembly and self-organising systems by means of artificial evolution. Towards this goal, this dissertation embodies research on evolutionary algorithms applied to the parameters design of a computational model of self-organisation and the components design of a computational model of self-assembly. In addition, an analytical assessment combining correlation metrics and clustering, as well as the exploration of emergent patterns of cooperativity and the measurement of activity across evolution, is made. The results support the research hypothesis that an adaptive process such as artificial evolution is indeed a suitable strategy for the automated design of self-assembly and self-organising systems where local interactions, homogeneity and both stochastic and discrete models of execution play a crucial role in emergent complex structures

    Handbook of Marine Model Organisms in Experimental Biology

    Get PDF
    "The importance of molecular approaches for comparative biology and the rapid development of new molecular tools is unprecedented. The extraordinary molecular progress belies the need for understanding the development and basic biology of whole organisms. Vigorous international efforts to train the next-generation of experimental biologists must combine both levels – next generation molecular approaches and traditional organismal biology. This book provides cutting-edge chapters regarding the growing list of marine model organisms. Access to and practical advice on these model organisms have become aconditio sine qua non for a modern education of advanced undergraduate students, graduate students and postdocs working on marine model systems. Model organisms are not only tools they are also bridges between fields – from behavior, development and physiology to functional genomics. Key Features Offers deep insights into cutting-edge model system science Provides in-depth overviews of all prominent marine model organisms Illustrates challenging experimental approaches to model system research Serves as a reference book also for next-generation functional genomics applications Fills an urgent need for students Related Titles Jarret, R. L. & K. McCluskey, eds. The Biological Resources of Model Organisms (ISBN 978-1-1382-9461-5) Kim, S.-K. Healthcare Using Marine Organisms (ISBN 978-1-1382-9538-4) Mudher, A. & T. Newman, eds. Drosophila: A Toolbox for the Study of Neurodegenerative Disease (ISBN 978-0-4154-1185-1) Green, S. L. The Laboratory Xenopus sp. (ISBN 978-1-4200-9109-0)
    corecore