438 research outputs found

    Comparison of Evolutionary Optimization Algorithms for FM-TV Broadcasting Antenna Array Null Filling

    Get PDF
    Broadcasting antenna array null filling is a very challenging problem for antenna design optimization. This paper compares five antenna design optimization algorithms (Differential Evolution, Particle Swarm, Taguchi, Invasive Weed, Adaptive Invasive Weed) as solutions to the antenna array null filling problem. The algorithms compared are evolutionary algorithms which use mechanisms inspired by biological evolution, such as reproduction, mutation, recombination, and selection. The focus of the comparison is given to the algorithm with the best results, nevertheless, it becomes obvious that the algorithm which produces the best fitness (Invasive Weed Optimization) requires very substantial computational resources due to its random search nature

    DVB-S Signal Tracking Techniques for Mobile Phased Arrays

    Get PDF
    Abstract—A system that uses adaptive beamforming techniques for mobile Digital Video Broadcasting Satellite (DVB-S) reception is proposed in this paper. The purpose is to enable DVB-S reception in moving vehicles. Phased arrays are able to electronically track the desired signal during dynamic behaviour of the vehicle the array is mounted on.\ud The proposed system uses blind beamforming to adapt the array steering vector to changing signal (conditions and) directions. Movement of the vehicle, the phased array is mounted on, leads to modulus and phase deviations at the beamformer output. An extended version of the Constant Modulus Algorithm (CMA) algorithm is used to adapt the steering vector weights to compensate for those deviations.\ud For simulation of the proposed system a model of vehicle dynamics is used to generate realistic antenna data. Simulation of the proposed system based on this antenna data shows appropriate corrections for modulus and phase deviations

    Design of a Novel Antenna Array Beamformer Using Neural Networks Trained by Modified Adaptive Dispersion Invasive Weed Optimization Based Data

    Get PDF
    A new antenna array beamformer based on neural networks (NNs) is presented. The NN training is performed by using optimized data sets extracted by a novel Invasive Weed Optimization (IWO) variant called Modified Adaptive Dispersion IWO (MADIWO). The trained NN is utilized as an adaptive beamformer that makes a uniform linear antenna array steer the main lobe towards a desired signal, place respective nulls towards several interference signals and suppress the side lobe level (SLL). Initially, the NN structure is selected by training several NNs of various structures using MADIWO based data and by making a comparison among the NNs in terms of training performance. The selected NN structure is then used to construct an adaptive beamformer, which is compared to MADIWO based and ADIWO based beamformers, regarding the SLL as well as the ability to properly steer the main lobe and the nulls. The comparison is made considering several sets of random cases with different numbers of interference signals and different power levels of additive zero-mean Gaussian noise. The comparative results exhibit the advantages of the proposed beamformer

    Design of a DVB-T2 simulation platform and network optimization with Simulated Annealing

    Get PDF
    The implementation of the Digital Terrestrial Television is becoming a reality in the Spanish territory. In this context, with the satellite and cable systems, this technology is one of the possible mediums for the television signal transmission. Its development is becoming crucial for the digital transition in those countries which mainly depend on the terrestrial networks for the reception of multimedia contents. However, due to the maturity of the current standard, and also to the higher requirements of the customer needing (HDTV, new contents, etc.), a revision of the current standard becomes necessary. The DVB organisation in collaboration with other entities and organisms has developed a new standard version capable to satisfy those requirements. The main objective of the project is the design and implementation of a physical layer simulation platform for the DVB-T2 standard. This simulator allows the theoretical evaluation of the new enhanced proposals, making easier a later field measurement stage and the future network deployment. The document describes the implementation of the simulation platform as well as its subsequent validation stage, including large graphical results that allow the evaluation and quantification of the improvements introduced over the current standard version (DVB-T). On the other hand, and as future investigation lines, a solution for the future DVB-T2 network deployment is performed, enhancing the coverage capacity of the current network by the use of iterative meta-heuristic techniques. Finally it has to be mentioned that this work has been performed within the context of a project called FURIA, which is a strategic research project funded by the Spanish Ministry of Industry, Tourism and Commerce

    Design of a DVB-T2 simulation platform and network optimization with Simulated Annealing

    Get PDF
    The implementation of the Digital Terrestrial Television is becoming a reality in the Spanish territory. In this context, with the satellite and cable systems, this technology is one of the possible mediums for the television signal transmission. Its development is becoming crucial for the digital transition in those countries which mainly depend on the terrestrial networks for the reception of multimedia contents. However, due to the maturity of the current standard, and also to the higher requirements of the customer needing (HDTV, new contents, etc.), a revision of the current standard becomes necessary. The DVB organisation in collaboration with other entities and organisms has developed a new standard version capable to satisfy those requirements. The main objective of the project is the design and implementation of a physical layer simulation platform for the DVB-T2 standard. This simulator allows the theoretical evaluation of the new enhanced proposals, making easier a later field measurement stage and the future network deployment. The document describes the implementation of the simulation platform as well as its subsequent validation stage, including large graphical results that allow the evaluation and quantification of the improvements introduced over the current standard version (DVB-T). On the other hand, and as future investigation lines, a solution for the future DVB-T2 network deployment is performed, enhancing the coverage capacity of the current network by the use of iterative meta-heuristic techniques. Finally it has to be mentioned that this work has been performed within the context of a project called FURIA, which is a strategic research project funded by the Spanish Ministry of Industry, Tourism and Commerce

    Communications systems technology assessment study. Volume 2: Results

    Get PDF
    The cost and technology characteristics are examined for providing special satellite services at UHF, 2.5 GHz, and 14/12 GHz. Considered are primarily health, educational, informational and emergency disaster type services. The total cost of each configuration including space segment, earth station, installation operation and maintenance was optimized to reduce the user's total annual cost and establish preferred equipment performance parameters. Technology expected to be available between now and 1985 is identified and comparisons made between selected alternatives. A key element of the study is a survey of earth station equipment updating past work in the field, providing new insight into technology, and evaluating production and test methods that can reduce costs in large production runs. Various satellite configurations were examined. The cost impact of rain attenuation at Ku-band was evaluated. The factors affecting the ultimate capacity achievable with the available orbital arc and available bandwidth were analyzed

    Performance of SC-FDMA with diversity techniques over land mobile satellite channel

    Get PDF
    La demanda de la alta velocidad de datos resulta en una importante interferencia entre símbolos para los sistemas monoportadora en canales de ancho de banda y potencia limitada. Superar la selectividad en el tiempo y la frecuencia del canal de propagación requiere el uso de potentes técnicas de procesamiento de señales. Ejemplos recientes incluyen el uso de múltiples antenas en el transmisor / receptor, en la técnica conocida como Multiple-Input Multiple-Output (MIMO). En ciertos entornos (tales como el enlace ascendente de un enlace móvil) por lo general sólo una antena está disponible en la transmisión. Por lo tanto, sólo esquemas con entrada individual y salida única (Single Input Single Output, SISO) o transmisiones con entrada única y múltiples salidas (Single Input Multiple Output, SIMO) son factibles. La multiplexación por división ortogonal en frecuencia (Orthogonal Frequency-Division Multiplexing, OFDM) es una técnica de modulación ampliamente utilizada por su robustez frente a la selectividad en frecuencia de los canales, su escalabilidad y su compatibilidad con MIMO. Sin embargo, sufre de una alta relación de potencia de pico a promedio (Peak-to-Average Power Ratio, PAPR) que necesita amplificadores de alta potencia muy lineales, lo que resulta costoso energéticamente para la transmisión. La técnica monoportadora con acceso múltiple por división de frecuencia (Single Carrier Frequency-Division Multiple Access , SC-FDMA) se ha convertido en una alternativa a la técnica de OFDM que se utiliza específicamente en el enlace ascendente de LTE. SC-FDMA es capaz de reducir la PAPR en la transmisión, dando lugar a una relajación de las limitaciones en cuanto a la eficiencia de potencia necesaria en los terminales de usuario y las unidades satélite. SC-FDMA puede ser descrito como una versión de OFDMA en el que se incluyen una etapa de pre-codificación y de pre-codificación inversa en el transmisor y el receptor respectivamente. Así, los símbolos se transmiten en tiempo, pero después de ser procesados en la frecuencia. Incluso con el uso de OFDMA o SC-FDMA, la ISI tiene que ser compensada por la igualación, que normalmente se realiza en el dominio de frecuencia. El objetivo de esta tesis es proporcionar un análisis matemático del comportamiento de SC-FDMA en un canal móvil terrestre por satélite (Land Mobile Satellite, LMS). Para este propósito, el canal se modela como un canal Rice sombreado tal que la línea de visión (Line of Sight, LOS) sigue la distribución de Nakagami. En primer lugar, se describen las técnicas de modulación multiportadora OFDMA y SC-FDMA. A continuación, se lleva a cabo un análisis de OFDMA y SC-FDMA basado en el ruido complejo recibido a la entrada del detector. Se evalúa la probabilidad de error de bit (Bit Error Rate, BER) de SC-FDMA para diferentes profundidades del desvanecimiento y de la diversidad de antena en el receptor. También se evalúa la eficiencia espectral de SC-FDMA para el canal LMS. Por último, se abordan las técnicas de diversidad y se evalúan las técnicas conocidas como Maximal Ratio Combining (MRC) y Equal Gain Combining (EGC)

    On Transmission System Design for Wireless Broadcasting

    Get PDF
    This thesis considers aspects related to the design and standardisation of transmission systems for wireless broadcasting, comprising terrestrial and mobile reception. The purpose is to identify which factors influence the technical decisions and what issues could be better considered in the design process in order to assess different use cases, service scenarios and end-user quality. Further, the necessity of cross-layer optimisation for efficient data transmission is emphasised and means to take this into consideration are suggested. The work is mainly related terrestrial and mobile digital video broadcasting systems but many of the findings can be generalised also to other transmission systems and design processes. The work has led to three main conclusions. First, it is discovered that there are no sufficiently accurate error criteria for measuring the subjective perceived audiovisual quality that could be utilised in transmission system design. Means for designing new error criteria for mobile TV (television) services are suggested and similar work related to other services is recommended. Second, it is suggested that in addition to commercial requirements there should be technical requirements setting the frame work for the design process of a new transmission system. The technical requirements should include the assessed reception conditions, technical quality of service and service functionalities. Reception conditions comprise radio channel models, receiver types and antenna types. Technical quality of service consists of bandwidth, timeliness and reliability. Of these, the thesis focuses on radio channel models and errorcriteria (reliability) as two of the most important design challenges and provides means to optimise transmission parameters based on these. Third, the thesis argues that the most favourable development for wireless broadcasting would be a single system suitable for all scenarios of wireless broadcasting. It is claimed that there are no major technical obstacles to achieve this and that the recently published second generation digital terrestrial television broadcasting system provides a good basis. The challenges and opportunities of a universal wireless broadcasting system are discussed mainly from technical but briefly also from commercial and regulatory aspectSiirretty Doriast

    Design and Analysis of Forward Error Control Coding and Signaling for Guaranteeing QoS in Wireless Broadcast Systems

    Get PDF
    Broadcasting systems are networks where the transmission is received by several terminals. Generally broadcast receivers are passive devices in the network, meaning that they do not interact with the transmitter. Providing a certain Quality of Service (QoS) for the receivers in heterogeneous reception environment with no feedback is not an easy task. Forward error control coding can be used for protection against transmission errors to enhance the QoS for broadcast services. For good performance in terrestrial wireless networks, diversity should be utilized. The diversity is utilized by application of interleaving together with the forward error correction codes. In this dissertation the design and analysis of forward error control and control signalling for providing QoS in wireless broadcasting systems are studied. Control signaling is used in broadcasting networks to give the receiver necessary information on how to connect to the network itself and how to receive the services that are being transmitted. Usually control signalling is considered to be transmitted through a dedicated path in the systems. Therefore, the relationship of the signaling and service data paths should be considered early in the design phase. Modeling and simulations are used in the case studies of this dissertation to study this relationship. This dissertation begins with a survey on the broadcasting environment and mechanisms for providing QoS therein. Then case studies present analysis and design of such mechanisms in real systems. The mechanisms for providing QoS considering signaling and service data paths and their relationship at the DVB-H link layer are analyzed as the first case study. In particular the performance of different service data decoding mechanisms and optimal signaling transmission parameter selection are presented. The second case study investigates the design of signaling and service data paths for the more modern DVB-T2 physical layer. Furthermore, by comparing the performances of the signaling and service data paths by simulations, configuration guidelines for the DVB-T2 physical layer signaling are given. The presented guidelines can prove useful when configuring DVB-T2 transmission networks. Finally, recommendations for the design of data and signalling paths are given based on findings from the case studies. The requirements for the signaling design should be derived from the requirements for the main services. Generally, these requirements for signaling should be more demanding as the signaling is the enabler for service reception.Siirretty Doriast
    corecore