6,436 research outputs found

    Comparative analysis of neutronics/thermal-hydraulics multi-scale coupling for LWR analysis

    Get PDF
    The aim of the research described in this paper is to perform consistent comparative analyses of two different approaches for coupling of two-scale, two-physics phenomena in reactor core calculations. The physical phenomena of interest are the neutronics and the thermal-hydraulics core behaviors and their interactions, while the spatial scales are the “global” (assembly/channel-wise) and the “local” (pin/sub-channel-wise). The objective is three-fold: qualification of coupled code systems by consistent step-by-step cross-comparison (in order to understand the prediction deviations in both neutronics and thermal-hydraulics parameters); assessment of fine scale (local/subchannel-wise) thermal-hydraulic effects; and evaluation of the impact of on-line modeling of interactions of the two spatial scales. The reported work is within the cooperation between the Universidad Politécnica de Madrid (UPM), Spain and the Pennsylvania State University (PSU), USA. The paper first presents the two multi-scale coupled code systems followed by cross-comparisons for steady state calculations. Selected results are discussed to highlight some of the issues involved in comparative analysis of coupled multi-scale simulations. The transient comparisons are subject of future work and publications

    System thermal-hydraulic modelling of the phénix dissymmetric test benchmark

    Get PDF
    Phénix is a French pool-type sodium-cooled prototype reactor; before the definitive shutdown, occurred in 2009, a final set of experimental tests are carried out in order to increase the knowledge on the operation and the safety aspect of the pool-type liquid metal-cooled reactors. One of the experiments was the Dissymmetric End-of-Life Test which was selected for the validation benchmark activity in the frame of SESAME project. The computer code validation plays a key role in the safety assessment of the innovative nuclear reactors and the Phénix dissymmetric test provides useful experimental data to verify the computer codes capability in the asymmetric thermal-hydraulic behaviour into a pool-type liquid metal-cooled reactor. This paper shows the comparison of the outcomes obtained with six different System Thermal-Hydraulic (STH) codes: RELAP5-3D©, SPECTRA, ATHLET, SAS4A/SASSYS-1, ASTEC-Na and CATHARE. The nodalization scheme of the reactor was individually achieved by the participants; during the development of the thermal-hydraulic model, the pool nodalization methodology had a special attention in order to investigate the capability of the STH codes to reproduce the dissymmetric effects which occur in each loop and into pools, caused by the azimuthal asymmetry of the boundary conditions. The modelling methodology of the participants is discussed and the main results are compared in this paper to obtain useful guide lines for the future modelling of innovative liquid metal pool-type reactors

    Transient Flow Analysis of a Closing Blowout Preventer Using Computational Fluid Dynamics (CFD)

    Get PDF
    Reliability of blowout preventers (BOPs) is crucial for drilling and production operations. Erosion of BOP components and hydrodynamic forces on rams may cause failure of BOP elements to seal the well. Transient computational fluid dynamics (CFD) simulations of fluids within the wellbore and BOP offer quantitative and qualitative data related to this reliability during the closure of various BOP components. Since limited research has been published in transient CFD simulations of closing BOPs, this thesis discusses challenges and solutions to simulating closing blowout preventers. Single component fluids are simulated through several BOP geometries such as annular preventers, pipe rams, and shear rams. Cavitation, pressure fields, velocity fields, and shear rates along walls are monitored during the simulations. The present work provides a basis to which future directions may be built upon, such as more complex fluid properties

    Coupled simulations of the NACIE facility using RELAP5 and ANSYS FLUENT codes

    Get PDF
    This work deals with the development and preliminarily assessment of a coupling methodology between a modified version of RELAP5/Mod3.3 STH code and FLUENT commercial CFD code, applied to the NACIE (natural circulation experiment) LBE (lead bismuth eutectic) experimental loop (built and located at the ENEA Brasimone research centre). The coupling tool is used to simulate experiments representative of both natural circulation conditions and isothermal gas enhanced (assisted) circulation. Furthermore, an accidental test reproducing an Unprotected Loss of Flow (ULOF) scenario is also simulated and the outcomes are presented. A preliminary sensitivity analysis has shown that, to guarantee a suitable numerical convergence, the assisted circulation tests require a time step one order of magnitude lower compared to natural circulation ones. The comparison between the RELAP5 stand-alone simulations and RELAP5/FLUENT coupled simulations proved the capability to simulate the thermal-hydraulic behaviour of a loop experimental facility for all the examined conditions

    Advanced multi-physics simulation for reactor safety in the framework of the NURESAFE project

    Full text link
    Since some years, there is a worldwide trend to move towards “higher-fidelity” simulation techniques in reactor analysis. One of the main objectives of the research in this area is to enhance the prediction capability of the computations used for safety demonstration of the current LWR nuclear power plants through the dynamic 3D coupling of the codes simulating the different physics of the problem into a common multi-physics simulation scheme. In this context, the NURESAFE European project aims at delivering to the European stakeholders an advanced and reliable software capacity usable for safety analysis needs of present and future LWR reactors and developing a high level of expertise in Europe in the proper use of the most recent simulation tools including uncertainty assessment to quantify the margins toward feared phenomena occurring during an accident. This software capacity is based on the NURESIM European simulation platform created during FP6 NURESIM project which includes advanced core physics, two-phase thermal–hydraulics, fuel modeling and multi-scale and multi-physics features together with sensitivity and uncertainty tools. These physics are fully integrated into the platform in order to provide a standardized state-of-the-art code system to support safety analysis of current and evolving LWRs
    • …
    corecore