22 research outputs found

    Branch Prediction For Network Processors

    Get PDF
    Originally designed to favour flexibility over packet processing performance, the future of the programmable network processor is challenged by the need to meet both increasing line rate as well as providing additional processing capabilities. To meet these requirements, trends within networking research has tended to focus on techniques such as offloading computation intensive tasks to dedicated hardware logic or through increased parallelism. While parallelism retains flexibility, challenges such as load-balancing limit its scope. On the other hand, hardware offloading allows complex algorithms to be implemented at high speed but sacrifice flexibility. To this end, the work in this thesis is focused on a more fundamental aspect of a network processor, the data-plane processing engine. Performing both system modelling and analysis of packet processing functions; the goal of this thesis is to identify and extract salient information regarding the performance of multi-processor workloads. Following on from a traditional software based analysis of programme workloads, we develop a method of modelling and analysing hardware accelerators when applied to network processors. Using this quantitative information, this thesis proposes an architecture which allows deeply pipelined micro-architectures to be implemented on the data-plane while reducing the branch penalty associated with these architectures

    Automatic Generation of Models of Microarchitectures

    Get PDF
    Detailed microarchitectural models are necessary to predict, explain, or optimize the performance of software running on modern microprocessors. Building such models often requires a significant manual effort, as the documentation provided by hardware manufacturers is typically not precise enough. The goal of this thesis is to develop techniques for generating microarchitectural models automatically. In the first part, we focus on recent x86 microarchitectures. We implement a tool to accurately evaluate small microbenchmarks using hardware performance counters. We then describe techniques to automatically generate microbenchmarks for measuring the performance of individual instructions and for characterizing cache architectures. We apply our implementations to more than a dozen different microarchitectures. In the second part of the thesis, we study more general techniques to obtain models of hardware components. In particular, we propose the concept of gray-box learning, and we develop a learning algorithm for Mealy machines that exploits prior knowledge about the system to be learned. Finally, we show how this algorithm can be adapted to minimize incompletely specified Mealy machines—a well-known NP-complete problem. Our implementation outperforms existing exact minimization techniques by several orders of magnitude on a number of hard benchmarks; it is even competitive with state-of-the-art heuristic approaches.Zur Vorhersage, ErklĂ€rung oder Optimierung der Leistung von Software auf modernen Mikroprozessoren werden detaillierte Modelle der verwendeten Mikroarchitekturen benötigt. Das Erstellen derartiger Modelle ist oft mit einem hohen Aufwand verbunden, da die erforderlichen Informationen von den Prozessorherstellern typischerweise nicht zur VerfĂŒgung gestellt werden. Das Ziel der vorliegenden Arbeit ist es, Techniken zu entwickeln, um derartige Modelle automatisch zu erzeugen. Im ersten Teil beschĂ€ftigen wir uns mit aktuellen x86-Mikroarchitekturen. Wir entwickeln zuerst ein Tool, das kleine Microbenchmarks mithilfe von Performance Countern auswerten kann. Danach beschreiben wir Techniken, um automatisch Microbenchmarks zu erzeugen, mit denen die Leistung einzelner Instruktionen gemessen sowie die Cache-Architektur charakterisiert werden kann. Im zweiten Teil der Arbeit betrachten wir allgemeinere Techniken, um Hardwaremodelle zu erzeugen. Wir schlagen das Konzept des “Gray-Box Learning” vor, und wir entwickeln einen Lernalgorithmus fĂŒr Mealy-Maschinen, der bekannte Informationen ĂŒber das zu lernende System berĂŒcksichtigt. Zum Abschluss zeigen wir, wie dieser Algorithmus auf das Problem der Minimierung unvollstĂ€ndig spezifizierter Mealy-Maschinen ĂŒbertragen werden kann. Hierbei handelt es sich um ein bekanntes NP-vollstĂ€ndiges Problem. Unsere Implementierung ist in mehreren Benchmarks um GrĂ¶ĂŸenordnungen schneller als vorherige AnsĂ€tze

    Microarchitectural techniques to reduce energy consumption in the memory hierarchy

    Get PDF
    This thesis states that dynamic profiling of the memory reference stream can improve energy and performance in the memory hierarchy. The research presented in this theses provides multiple instances of using lightweight hardware structures to profile the memory reference stream. The objective of this research is to develop microarchitectural techniques to reduce energy consumption at different levels of the memory hierarchy. Several simple and implementable techniques were developed as a part of this research. One of the techniques identifies and eliminates redundant refresh operations in DRAM and reduces DRAM refresh power. Another, reduces leakage energy in L2 and higher level caches for multiprocessor systems. The emphasis of this research has been to develop several techniques of obtaining energy savings in caches using a simple hardware structure called the counting Bloom filter (CBF). CBFs have been used to predict L2 cache misses and obtain energy savings by not accessing the L2 cache on a predicted miss. A simple extension of this technique allows CBFs to do way-estimation of set associative caches to reduce energy in cache lookups. Another technique using CBFs track addresses in a Virtual Cache and reduce false synonym lookups. Finally this thesis presents a technique to reduce dynamic power consumption in level one caches using significance compression. The significant energy and performance improvements demonstrated by the techniques presented in this thesis suggest that this work will be of great value for designing memory hierarchies of future computing platforms.Ph.D.Committee Chair: Lee, Hsien-Hsin S.; Committee Member: Cahtterjee,Abhijit; Committee Member: Mukhopadhyay, Saibal; Committee Member: Pande, Santosh; Committee Member: Yalamanchili, Sudhaka

    Adaptive Microarchitectural Optimizations to Improve Performance and Security of Multi-Core Architectures

    Get PDF
    With the current technological barriers, microarchitectural optimizations are increasingly important to ensure performance scalability of computing systems. The shift to multi-core architectures increases the demands on the memory system, and amplifies the role of microarchitectural optimizations in performance improvement. In a multi-core system, microarchitectural resources are usually shared, such as the cache, to maximize utilization but sharing can also lead to contention and lower performance. This can be mitigated through partitioning of shared caches.However, microarchitectural optimizations which were assumed to be fundamentally secure for a long time, can be used in side-channel attacks to exploit secrets, as cryptographic keys. Timing-based side-channels exploit predictable timing variations due to the interaction with microarchitectural optimizations during program execution. Going forward, there is a strong need to be able to leverage microarchitectural optimizations for performance without compromising security. This thesis contributes with three adaptive microarchitectural resource management optimizations to improve security and/or\ua0performance\ua0of multi-core architectures\ua0and a systematization-of-knowledge of timing-based side-channel attacks.\ua0We observe that to achieve high-performance cache partitioning in a multi-core system\ua0three requirements need to be met: i) fine-granularity of partitions, ii) locality-aware placement and iii) frequent changes. These requirements lead to\ua0high overheads for current centralized partitioning solutions, especially as the number of cores in the\ua0system increases. To address this problem, we present an adaptive and scalable cache partitioning solution (DELTA) using a distributed and asynchronous allocation algorithm. The\ua0allocations occur through core-to-core challenges, where applications with larger performance benefit will gain cache capacity. The\ua0solution is implementable in hardware, due to low computational complexity, and can scale to large core counts.According to our analysis, better performance can be achieved by coordination of multiple optimizations for different resources, e.g., off-chip bandwidth and cache, but is challenging due to the increased number of possible allocations which need to be evaluated.\ua0Based on these observations, we present a solution (CBP) for coordinated management of the optimizations: cache partitioning, bandwidth partitioning and prefetching.\ua0Efficient allocations, considering the inter-resource interactions and trade-offs, are achieved using local resource managers to limit the solution space.The continuously growing number of\ua0side-channel attacks leveraging\ua0microarchitectural optimizations prompts us to review attacks and defenses to understand the vulnerabilities of different microarchitectural optimizations. We identify the four root causes of timing-based side-channel attacks: determinism, sharing, access violation\ua0and information flow.\ua0Our key insight is that eliminating any of the exploited root causes, in any of the attack steps, is enough to provide protection.\ua0Based on our framework, we present a systematization of the attacks and defenses on a wide range of microarchitectural optimizations, which highlights their key similarities.\ua0Shared caches are an attractive attack surface for side-channel attacks, while defenses need to be efficient since the cache is crucial for performance.\ua0To address this issue, we present an adaptive and scalable cache partitioning solution (SCALE) for protection against cache side-channel attacks. The solution leverages randomness,\ua0and provides quantifiable and information theoretic security guarantees using differential privacy. The solution closes the performance gap to a state-of-the-art non-secure allocation policy for a mix of secure and non-secure applications
    corecore