919 research outputs found

    Bibliography for computer security, integrity, and safety

    Get PDF
    A bibliography of computer security, integrity, and safety issues is given. The bibliography is divided into the following sections: recent national publications; books; journal, magazine articles, and miscellaneous reports; conferences, proceedings, and tutorials; and government documents and contractor reports

    Combining Static and Dynamic Analysis for Automatic Identification of Precise Access-Control Policies

    Get PDF

    Distributed IoT Attestation via Blockchain (Extended Version)

    Get PDF
    The growing number and nature of Internet of Things (IoT) devices makes these resource-constrained appliances particularly vulnerable and increasingly impactful in their exploitation. Current estimates for the number of connected things commonly reach the tens of billions. The low-cost and limited computational strength of these devices can preclude security features. Additionally, economic forces and a lack of industry expertise in security often contribute to a rush to market with minimal consideration for security implications. It is essential that users of these emerging technologies, from consumers to IT professionals, be able to establish and retain trust in the multitude of diverse and pervasive compute devices that are ever more responsible for our critical infrastructure and personal information. Remote attestation is a well-known technique for building such trust between devices. In standard implementations, a potentially untrustworthy prover attests, using public key infrastructure, to a verifier about its configuration or properties of its current state. Attestation is often performed on an ad hoc basis with little concern for historicity. However, controls and sensors manufactured for the Industrial IoT (IIoT) may be expected to operate for decades. Even in the consumer market, so-called smart things can be expected to outlive their manufacturers. This longevity combined with limited software or firmware patching creates an ideal environment for long-lived zero-day vulnerabilities. Knowing both if a device is vulnerable and if so when it became vulnerable is a management nightmare as IoT deployments scale. For network connected machines, with access to sensitive information and real-world physical controls, maintaining some sense of a device\u27s lifecycle would be insightful. In this paper, we propose a novel attestation architecture, DAN: a distributed attestation network, utilizing blockchain to store and share device information. We present the design of this new attestation architecture, and describe a virtualized simulation, as well as a prototype system chosen to emulate an IoT deployment with a network of Raspberry Pi, Infineon TPMs, and a Hyperledger Fabric blockchain. We discuss the implications and potential challenges of such a network for various applications such as identity management, intrusion detection, forensic audits, and regulatory certification

    A Touch of Evil: High-Assurance Cryptographic Hardware from Untrusted Components

    Get PDF
    The semiconductor industry is fully globalized and integrated circuits (ICs) are commonly defined, designed and fabricated in different premises across the world. This reduces production costs, but also exposes ICs to supply chain attacks, where insiders introduce malicious circuitry into the final products. Additionally, despite extensive post-fabrication testing, it is not uncommon for ICs with subtle fabrication errors to make it into production systems. While many systems may be able to tolerate a few byzantine components, this is not the case for cryptographic hardware, storing and computing on confidential data. For this reason, many error and backdoor detection techniques have been proposed over the years. So far all attempts have been either quickly circumvented, or come with unrealistically high manufacturing costs and complexity. This paper proposes Myst, a practical high-assurance architecture, that uses commercial off-the-shelf (COTS) hardware, and provides strong security guarantees, even in the presence of multiple malicious or faulty components. The key idea is to combine protective-redundancy with modern threshold cryptographic techniques to build a system tolerant to hardware trojans and errors. To evaluate our design, we build a Hardware Security Module that provides the highest level of assurance possible with COTS components. Specifically, we employ more than a hundred COTS secure crypto-coprocessors, verified to FIPS140-2 Level 4 tamper-resistance standards, and use them to realize high-confidentiality random number generation, key derivation, public key decryption and signing. Our experiments show a reasonable computational overhead (less than 1% for both Decryption and Signing) and an exponential increase in backdoor-tolerance as more ICs are added

    An introduction of a modular framework for securing 5G networks and beyond

    Get PDF
    Fifth Generation Mobile Network (5G) is a heterogeneous network in nature, made up of multiple systems and supported by different technologies. It will be supported by network services such as device-to-device (D2D) communications. This will enable the new use cases to provide access to other services within the network and from third-party service providers (SPs). End-users with their user equipment (UE) will be able to access services ubiquitously from multiple SPs that might share infrastructure and security management, whereby implementing security from one domain to another will be a challenge. This highlights a need for a new and effective security approach to address the security of such a complex system. This article proposes a network service security (NSS) modular framework for 5G and beyond that consists of different security levels of the network. It reviews the security issues of D2D communications in 5G, and it is used to address security issues that affect the users and SPs in an integrated and heterogeneous network such as the 5G enabled D2D communications network. The conceptual framework consists of a physical layer, network access, service and D2D security levels. Finally, it recommends security mechanisms to address the security issues at each level of the 5G-enabled D2D communications network
    corecore