7 research outputs found

    Design of User-Customized Negative Emotion Classifier Based on Feature Selection Using Physiological Signal Sensors

    Get PDF
    First, the Likert scale and self-assessment manikin are used to provide emotion analogies, but they have limits for reflecting subjective factors. To solve this problem, we use physiological signals that show objective responses from cognitive status. The physiological signals used are electrocardiogram, skin temperature, and electrodermal activity (EDA). Second, the degree of emotion felt, and the related physiological signals, vary according to the individual. KLD calculates the difference in probability distribution shape patterns between two classes. Therefore, it is possible to analyze the relationship between physiological signals and emotion. As the result, features from EDA are important for distinguishing negative emotion in all subjects. In addition, the proposed feature selection algorithm showed an average accuracy of 92.5% and made it possible to improve the accuracy of negative emotion recognition.ope

    GPU accelerating distributed succinct de Bruijn graph construction

    Get PDF
    The research and methods in the field of computational biology have grown in the last decades, thanks to the availability of biological data. One of the applications in computational biology is genome sequencing or sequence alignment, a method to arrange sequences of, for example, DNA or RNA, to determine regions of similarity between these sequences. Sequence alignment applications include public health purposes, such as monitoring antimicrobial resistance. Demand for fast sequence alignment has led to the usage of data structures, such as the de Bruijn graph, to store a large amount of information efficiently. De Bruijn graphs are currently one of the top data structures used in indexing genome sequences, and different methods to represent them have been explored. One of these methods is the BOSS data structure, a special case of Wheeler graph index, which uses succinct data structures to represent a de Bruijn graph. As genomes can take a large amount of space, the construction of succinct de Bruijn graphs is slow. This has led to experimental research on using large-scale cluster engines such as Apache Spark and Graphic Processing Units (GPUs) in genome data processing. This thesis explores the use of Apache Spark and Spark RAPIDS, a GPU computing library for Apache Spark, in the construction of a succinct de Bruijn graph index from genome sequences. The experimental results indicate that Spark RAPIDS can provide up to 8 times speedups to specific operations, but for some other operations has severe limitations that limit its processing power in terms of succinct de Bruijn graph index construction

    Recognition of Negative Emotion using Long Short-Term Memory with Bio-Signal Feature Compression

    Get PDF
    Negative emotion is one reason why stress causes negative feedback. Therefore, many studies are being done to recognize negative emotions. However, emotion is difficult to classify because it is subjective and difficult to quantify. Moreover, emotion changes over time and is affected by mood. Therefore, we measured electrocardiogram (ECG), skin temperature (ST), and galvanic skin response (GSR) to detect objective indicators. We also compressed the features associated with emotion using a stacked auto-encoder (SAE). Finally, the compressed features and time information were used in training through long short-term memory (LSTM). As a result, the proposed LSTM used with the feature compression model showed the highest accuracy (99.4%) for recognizing negative emotions. The results of the suggested model were 11.3% higher than with a neural network (NN) and 5.6% higher than with SAE.ope

    Artificial Intelligence and Ambient Intelligence

    Get PDF
    This book includes a series of scientific papers published in the Special Issue on Artificial Intelligence and Ambient Intelligence at the journal Electronics MDPI. The book starts with an opinion paper on ā€œRelations between Electronics, Artificial Intelligence and Information Society through Information Society Rulesā€, presenting relations between information society, electronics and artificial intelligence mainly through twenty-four IS laws. After that, the book continues with a series of technical papers that present applications of Artificial Intelligence and Ambient Intelligence in a variety of fields including affective computing, privacy and security in smart environments, and robotics. More specifically, the first part presents usage of Artificial Intelligence (AI) methods in combination with wearable devices (e.g., smartphones and wristbands) for recognizing human psychological states (e.g., emotions and cognitive load). The second part presents usage of AI methods in combination with laser sensors or Wi-Fi signals for improving security in smart buildings by identifying and counting the number of visitors. The last part presents usage of AI methods in robotics for improving robotsā€™ ability for object gripping manipulation and perception. The language of the book is rather technical, thus the intended audience are scientists and researchers who have at least some basic knowledge in computer science

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with cliniciansā€™ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operationsā€”such as segmentation, co-registration, classification, and dimensionality reductionā€”and multi-omics data integration.

    Signal Processing Using Non-invasive Physiological Sensors

    Get PDF
    Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions

    Enhancement of Robot-Assisted Rehabilitation Outcomes of Post-Stroke Patients Using Movement-Related Cortical Potential

    Get PDF
    Post-stroke rehabilitation is essential for stroke survivors to help them regain independence and to improve their quality of life. Among various rehabilitation strategies, robot-assisted rehabilitation is an efficient method that is utilized more and more in clinical practice for motor recovery of post-stroke patients. However, excessive assistance from robotic devices during rehabilitation sessions can make patients perform motor training passively with minimal outcome. Towards the development of an efficient rehabilitation strategy, it is necessary to ensure the active participation of subjects during training sessions. This thesis uses the Electroencephalography (EEG) signal to extract the Movement-Related Cortical Potential (MRCP) pattern to be used as an indicator of the active engagement of stroke patients during rehabilitation training sessions. The MRCP pattern is also utilized in designing an adaptive rehabilitation training strategy that maximizes patientsā€™ engagement. This project focuses on the hand motor recovery of post-stroke patients using the AMADEO rehabilitation device (Tyromotion GmbH, Austria). AMADEO is specifically developed for patients with fingers and hand motor deficits. The variations in brain activity are analyzed by extracting the MRCP pattern from the acquired EEG data during training sessions. Whereas, physical improvement in hand motor abilities is determined by two methods. One is clinical tests namely Fugl-Meyer Assessment (FMA) and Motor Assessment Scale (MAS) which include FMA-wrist, FMA-hand, MAS-hand movements, and MAS-advanced hand movementsā€™ tests. The other method is the measurement of hand-kinematic parameters using the AMADEO assessment tool which contains hand strength measurements during flexion (force-flexion), and extension (force-extension), and Hand Range of Movement (HROM)
    corecore