2 research outputs found

    SecDDR: Enabling Low-Cost Secure Memories by Protecting the DDR Interface

    Full text link
    The security goals of cloud providers and users include memory confidentiality and integrity, which requires implementing Replay-Attack protection (RAP). RAP can be achieved using integrity trees or mutually authenticated channels. Integrity trees incur significant performance overheads and are impractical for protecting large memories. Mutually authenticated channels have been proposed only for packetized memory interfaces that address only a very small niche domain and require fundamental changes to memory system architecture. We propose SecDDR, a low-cost RAP that targets direct-attached memories, like DDRx. SecDDR avoids memory-side data authentication, and thus, only adds a small amount of logic to memory components and does not change the underlying DDR protocol, making it practical for widespread adoption. In contrast to prior mutual authentication proposals, which require trusting the entire memory module, SecDDR targets untrusted modules by placing its limited security logic on the DRAM die (or package) of the ECC chip. Our evaluation shows that SecDDR performs within 1% of an encryption-only memory without RAP and that SecDDR provides 18.8% and 7.8% average performance improvements (up to 190.4% and 24.8%) relative to a 64-ary integrity tree and an authenticated channel, respectively

    Power efficient and power attacks resistant system design and analysis using aggressive scaling with timing speculation

    Get PDF
    Growing usage of smart and portable electronic devices demands embedded system designers to provide solutions with better performance and reduced power consumption. Due to the new development of IoT and embedded systems usage, not only power and performance of these devices but also security of them is becoming an important design constraint. In this work, a novel aggressive scaling based on timing speculation is proposed to overcome the drawbacks of traditional DVFS and provide security from power analysis attacks at the same time. Dynamic voltage and frequency scaling (DVFS) is proven to be the most suitable technique for power efficiency in processor designs. Due to its promising benefits, the technique is still getting researchers attention to trade off power and performance of modern processor designs. The issues of traditional DVFS are: 1) Due to its pre-calculated operating points, the system is not able to suit to modern process variations. 2) Since Process Voltage and Temperature (PVT) variations are not considered, large timing margins are added to guarantee a safe operation in the presence of variations. The research work presented here addresses these issues by employing aggressive scaling mechanisms to achieve more power savings with increased performance. This approach uses in-situ timing error monitoring and recovering mechanisms to reduce extra timing margins and to account for process variations. A novel timing error detection and correction mechanism, to achieve more power savings or high performance, is presented. This novel technique has also been shown to improve security of processors against differential power analysis attacks technique. Differential power analysis attacks can extract secret information from embedded systems without knowing much details about the internal architecture of the device. Simulated and experimental data show that the novel technique can provide a performance improvement of 24% or power savings of 44% while occupying less area and power overhead. Overall, the proposed aggressive scaling technique provides an improvement in power consumption and performance while increasing the security of processors from power analysis attacks.N/
    corecore