109 research outputs found

    LoGAN: Generating Logos with a Generative Adversarial Neural Network Conditioned on Color

    Get PDF

    Machine learning for modeling the progression of Alzheimer disease dementia using clinical data: A systematic literature review

    Get PDF
    OBJECTIVE: Alzheimer disease (AD) is the most common cause of dementia, a syndrome characterized by cognitive impairment severe enough to interfere with activities of daily life. We aimed to conduct a systematic literature review (SLR) of studies that applied machine learning (ML) methods to clinical data derived from electronic health records in order to model risk for progression of AD dementia. MATERIALS AND METHODS: We searched for articles published between January 1, 2010, and May 31, 2020, in PubMed, Scopus, ScienceDirect, IEEE Explore Digital Library, Association for Computing Machinery Digital Library, and arXiv. We used predefined criteria to select relevant articles and summarized them according to key components of ML analysis such as data characteristics, computational algorithms, and research focus. RESULTS: There has been a considerable rise over the past 5 years in the number of research papers using ML-based analysis for AD dementia modeling. We reviewed 64 relevant articles in our SLR. The results suggest that majority of existing research has focused on predicting progression of AD dementia using publicly available datasets containing both neuroimaging and clinical data (neurobehavioral status exam scores, patient demographics, neuroimaging data, and laboratory test values). DISCUSSION: Identifying individuals at risk for progression of AD dementia could potentially help to personalize disease management to plan future care. Clinical data consisting of both structured data tables and clinical notes can be effectively used in ML-based approaches to model risk for AD dementia progression. Data sharing and reproducibility of results can enhance the impact, adaptation, and generalizability of this research

    Data Mining and Machine Learning for Software Engineering

    Get PDF
    Software engineering is one of the most utilizable research areas for data mining. Developers have attempted to improve software quality by mining and analyzing software data. In any phase of software development life cycle (SDLC), while huge amount of data is produced, some design, security, or software problems may occur. In the early phases of software development, analyzing software data helps to handle these problems and lead to more accurate and timely delivery of software projects. Various data mining and machine learning studies have been conducted to deal with software engineering tasks such as defect prediction, effort estimation, etc. This study shows the open issues and presents related solutions and recommendations in software engineering, applying data mining and machine learning techniques

    Anomaly detection of consumption in Hotel Units: A case study comparing isolation forest and variational autoencoder algorithms

    Get PDF
    Buildings are responsible for a high percentage of global energy consumption, and thus, the improvement of their efficiency can positively impact not only the costs to the companies they house, but also at a global level. One way to reduce that impact is to constantly monitor the consumption levels of these buildings and to quickly act when unjustified levels are detected. Currently, a variety of sensor networks can be deployed to constantly monitor many variables associated with these buildings, including distinct types of meters, air temperature, solar radiation, etc. However, as consumption is highly dependent on occupancy and environmental variables, the identification of anomalous consumption levels is a challenging task. This study focuses on the implementation of an intelligent system, capable of performing the early detection of anomalous sequences of values in consumption time series applied to distinct hotel unit meters. The development of the system was performed in several steps, which resulted in the implementation of several modules. An initial (i) Exploratory Data Analysis (EDA) phase was made to analyze the data, including the consumption datasets of electricity, water, and gas, obtained over several years. The results of the EDA were used to implement a (ii) data correction module, capable of dealing with the transmission losses and erroneous values identified during the EDA’s phase. Then, a (iii) comparative study was performed between a machine learning (ML) algorithm and a deep learning (DL) one, respectively, the isolation forest (IF) and a variational autoencoder (VAE). The study was made, taking into consideration a (iv) proposed performance metric for anomaly detection algorithms in unsupervised time series, also considering computational requirements and adaptability to different types of data. (v) The results show that the IF algorithm is a better solution for the presented problem, since it is easily adaptable to different sources of data, to different combinations of features, and has lower computational complexity. This allows its deployment without major computational requirements, high knowledge, and data history, whilst also being less prone to problems with missing data. As a global outcome, an architecture of a platform is proposed that encompasses the mentioned modules. The platform represents a running system, performing continuous detection and quickly alerting hotel managers about possible anomalous consumption levels, allowing them to take more timely measures to investigate and solve the associated causes.info:eu-repo/semantics/publishedVersio

    Business analytics in industry 4.0: a systematic review

    Get PDF
    Recently, the term “Industry 4.0” has emerged to characterize several Information Technology and Communication (ICT) adoptions in production processes (e.g., Internet-of-Things, implementation of digital production support information technologies). Business Analytics is often used within the Industry 4.0, thus incorporating its data intelligence (e.g., statistical analysis, predictive modelling, optimization) expert system component. In this paper, we perform a Systematic Literature Review (SLR) on the usage of Business Analytics within the Industry 4.0 concept, covering a selection of 169 papers obtained from six major scientific publication sources from 2010 to March 2020. The selected papers were first classified in three major types, namely, Practical Application, Reviews and Framework Proposal. Then, we analysed with more detail the practical application studies which were further divided into three main categories of the Gartner analytical maturity model, Descriptive Analytics, Predictive Analytics and Prescriptive Analytics. In particular, we characterized the distinct analytics studies in terms of the industry application and data context used, impact (in terms of their Technology Readiness Level) and selected data modelling method. Our SLR analysis provides a mapping of how data-based Industry 4.0 expert systems are currently used, disclosing also research gaps and future research opportunities.The work of P. Cortez was supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. We would like to thank to the three anonymous reviewers for their helpful suggestions

    SmartFog: Training the Fog for the energy-saving analytics of Smart-Meter data

    Get PDF
    In this paper, we characterize the main building blocks and numerically verify the classification accuracy and energy performance of SmartFog, a distributed and virtualized networked Fog technological platform for the support for Stacked Denoising Auto-Encoder (SDAE)-based anomaly detection in data flows generated by Smart-Meters (SMs). In SmartFog, the various layers of an SDAE are pretrained at different Fog nodes, in order to distribute the overall computational efforts and, then, save energy. For this purpose, a new Adaptive Elitist Genetic Algorithm (AEGA) is “ad hoc” designed to find the optimized allocation of the SDAE layers to the Fog nodes. Interestingly, the proposed AEGA implements a (novel) mechanism that adaptively tunes the exploration and exploitation capabilities of the AEGA, in order to quickly escape the attraction basins of local minima of the underlying energy objective function and, then, speed up the convergence towards global minima. As a matter of fact, the main distinguishing feature of the resulting SmartFog paradigm is that it accomplishes the joint integration on a distributed Fog computing platform of the anomaly detection functionality and the minimization of the resulting energy consumption. The reported numerical tests support the effectiveness of the designed technological platform and point out that the attained performance improvements over some state-of-the-art competing solutions are around 5%, 68% and 30% in terms of detection accuracy, execution time and energy consumption, respectively

    Single residential load forecasting using deep learning and image encoding techniques

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. The integration of more renewable energy resources into distribution networks makes the operation of these systems more challenging compared to the traditional passive networks. This is mainly due to the intermittent behavior of most renewable resources such as solar and wind generation. There are many different solutions being developed to make systems flexible such as energy storage or demand response. In the context of demand response, a key factor is to estimate the amount of load over time properly to better manage the demand side. There are many different forecasting methods, but the most accurate solutions are mainly found for the prediction of aggregated loads at the substation or building levels. However, more effective demand response from the residential side requires prediction of energy consumption at every single household level. The accuracy of forecasting loads at this level is often lower with the existing methods as the volatility of single residential loads is very high. In this paper, we present a hybrid method based on time series image encoding techniques and a convolutional neural network. The results of the forecasting of a real residential customer using different encoding techniques are compared with some other existing forecasting methods including SVM, ANN, and CNN. Without CNN, the lowest mean absolute percentage of error (MAPE) for a 15 min forecast is above 20%, while with existing CNN, directly applied to time series, an MAPE of around 18% could be achieved. We find the best image encoding technique for time series, which could result in higher accuracy of forecasting using CNN, an MAPE of around 12%
    corecore