108 research outputs found

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    CLEVER: a cooperative and cross-layer approach to video streaming in HetNets

    Get PDF
    We investigate the problem of providing a video streaming service to mobile users in an heterogeneous cellular network composed of micro e-NodeBs (eNBs) and macro e-NodeBs (MeNBs). More in detail, we target a cross-layer dynamic allocation of the bandwidth resources available over a set of eNBs and one MeNB, with the goal of reducing the delay per chunk experienced by users. After optimally formulating the problem of minimizing the chunk delay, we detail the Cross LayEr Video stReaming (CLEVER) algorithm, to practically tackle it. CLEVER makes allocation decisions on the basis of information retrieved from the application layer aswell as from lower layers. Results, obtained over two representative case studies, show that CLEVER is able to limit the chunk delay, while also reducing the amount of bandwidth reserved for offloaded users on the MeNB, as well as the number of offloaded users. In addition, we show that CLEVER performs clearly better than two selected reference algorithms, while being very close to a best bound. Finally, we show that our solution is able to achieve high fairness indexes and good levels of Quality of Experience (QoE)

    History-based consistency algorithm for the trickle-timer with low-power and lossy networks

    Get PDF
    Recently, the internet of things (IoT) has become an important concept which has changed the vision of the Internet with the appearance of IPv6 over low power and lossy networks (6LoWPAN). However, these 6LoWPANs have many drawbacks because of the use of many devices with limited resources; therefore, suitable protocols such as the Routing Protocol for low power and lossy networks (RPL) were developed, and one of RPL's main components is the trickle timer algorithm, used to control and maintain the routing traffic frequency caused by a set of control messages. However, the trickle timer suffered from the short-listen problem which was handled by adding the listen-only period mechanism. This addition increased the delay in propagating transmissions and resolving the inconsistency in the network. However, to solve this problem we proposed the history based consistency algorithm (HBC), which eliminates the listen-only period based on the consistency period of the network. The proposed algorithm showed very good results. We measured the performance of HBC trickle in terms of convergence time; which was mainly affected, the power consumption and the packet delivery ratio (PDR). We made a comparison between the original trickle timer, the E-Trickle, the optimized trickle and our HBC trickle algorithm. The PDR and the power consumption showed in some cases better results under the HBC trickle compared to other trickle timers and in other cases the results were very close to the original trickle indicating the efficiency of the proposed trickle in choosing optimal routes when sending messages

    Performance of management solutions and cooperation approaches for vehicular delay-tolerant networks

    Get PDF
    A wide range of daily-life applications supported by vehicular networks attracted the interest, not only from the research community, but also from governments and the automotive industry. For example, they can be used to enable services that assist drivers on the roads (e.g., road safety, traffic monitoring), to spread commercial and entertainment contents (e.g., publicity), or to enable communications on remote or rural regions where it is not possible to have a common network infrastructure. Nonetheless, the unique properties of vehicular networks raise several challenges that greatly impact the deployment of these networks. Most of the challenges faced by vehicular networks arise from the highly dynamic network topology, which leads to short and sporadic contact opportunities, disruption, variable node density, and intermittent connectivity. This situation makes data dissemination an interesting research topic within the vehicular networking area, which is addressed by this study. The work described along this thesis is motivated by the need to propose new solutions to deal with data dissemination problems in vehicular networking focusing on vehicular delay-tolerant networks (VDTNs). To guarantee the success of data dissemination in vehicular networks scenarios it is important to ensure that network nodes cooperate with each other. However, it is not possible to ensure a fully cooperative scenario. This situation makes vehicular networks suitable to the presence of selfish and misbehavior nodes, which may result in a significant decrease of the overall network performance. Thus, cooperative nodes may suffer from the overwhelming load of services from other nodes, which comprises their performance. Trying to solve some of these problems, this thesis presents several proposals and studies on the impact of cooperation, monitoring, and management strategies on the network performance of the VDTN architecture. The main goal of these proposals is to enhance the network performance. In particular, cooperation and management approaches are exploited to improve and optimize the use of network resources. It is demonstrated the performance gains attainable in a VDTN through both types of approaches, not only in terms of bundle delivery probability, but also in terms of wasted resources. The results and achievements observed on this research work are intended to contribute to the advance of the state-of-the-art on methods and strategies for overcome the challenges that arise from the unique characteristics and conceptual design of vehicular networks.O vasto número de aplicações e cenários suportados pelas redes veiculares faz com que estas atraiam o interesse não só da comunidade científica, mas também dos governos e da indústria automóvel. A título de exemplo, estas podem ser usadas para a implementação de serviços e aplicações que podem ajudar os condutores dos veículos a tomar decisões nas estradas, para a disseminação de conteúdos publicitários, ou ainda, para permitir que existam comunicações em zonas rurais ou remotas onde não é possível ter uma infraestrutura de rede convencional. Contudo, as propriedades únicas das redes veiculares fazem com que seja necessário ultrapassar um conjunto de desafios que têm grande impacto na sua aplicabilidade. A maioria dos desafios que as redes veiculares enfrentam advêm da grande mobilidade dos veículos e da topologia de rede que está em constante mutação. Esta situação faz com que este tipo de rede seja suscetível de disrupção, que as oportunidades de contacto sejam escassas e de curta duração, e que a ligação seja intermitente. Fruto destas adversidades, a disseminação dos dados torna-se um tópico de investigação bastante promissor na área das redes veiculares e por esta mesma razão é abordada neste trabalho de investigação. O trabalho descrito nesta tese é motivado pela necessidade de propor novas abordagens para lidar com os problemas inerentes à disseminação dos dados em ambientes veiculares. Para garantir o sucesso da disseminação dos dados em ambientes veiculares é importante que este tipo de redes garanta a cooperação entre os nós da rede. Contudo, neste tipo de ambientes não é possível garantir um cenário totalmente cooperativo. Este cenário faz com que as redes veiculares sejam suscetíveis à presença de nós não cooperativos que comprometem seriamente o desempenho global da rede. Por outro lado, os nós cooperativos podem ver o seu desempenho comprometido por causa da sobrecarga de serviços que poderão suportar. Para tentar resolver alguns destes problemas, esta tese apresenta várias propostas e estudos sobre o impacto de estratégias de cooperação, monitorização e gestão de rede no desempenho das redes veiculares com ligações intermitentes (Vehicular Delay-Tolerant Networks - VDTNs). O objetivo das propostas apresentadas nesta tese é melhorar o desempenho global da rede. Em particular, as estratégias de cooperação e gestão de rede são exploradas para melhorar e optimizar o uso dos recursos da rede. Ficou demonstrado que o uso deste tipo de estratégias e metodologias contribui para um aumento significativo do desempenho da rede, não só em termos de agregados de pacotes (“bundles”) entregues, mas também na diminuição do volume de recursos desperdiçados. Os resultados observados neste trabalho procuram contribuir para o avanço do estado da arte em métodos e estratégias que visam ultrapassar alguns dos desafios que advêm das propriedades e desenho conceptual das redes veiculares

    A Decoding-Complexity and Rate-Controlled Video-Coding Algorithm for HEVC

    Get PDF
    Video playback on mobile consumer electronic (CE) devices is plagued by fluctuations in the network bandwidth and by limitations in processing and energy availability at the individual devices. Seen as a potential solution, the state-of-the-art adaptive streaming mechanisms address the first aspect, yet the efficient control of the decoding-complexity and the energy use when decoding the video remain unaddressed. The quality of experience (QoE) of the end-users’ experiences, however, depends on the capability to adapt the bit streams to both these constraints (i.e., network bandwidth and device’s energy availability). As a solution, this paper proposes an encoding framework that is capable of generating video bit streams with arbitrary bit rates and decoding-complexity levels using a decoding-complexity–rate–distortion model. The proposed algorithm allocates rate and decoding-complexity levels across frames and coding tree units (CTUs) and adaptively derives the CTU-level coding parameters to achieve their imposed targets with minimal distortion. The experimental results reveal that the proposed algorithm can achieve the target bit rate and the decoding-complexity with 0.4% and 1.78% average errors, respectively, for multiple bit rate and decoding-complexity levels. The proposed algorithm also demonstrates a stable frame-wise rate and decoding-complexity control capability when achieving a decoding-complexity reduction of 10.11 (%/dB). The resultant decoding-complexity reduction translates into an overall energy-consumption reduction of up to 10.52 (%/dB) for a 1 dB peak signal-to-noise ratio (PSNR) quality loss compared to the HM 16.0 encoded bit streams

    an open and modular hardware node for wireless sensor and body area networks

    Get PDF
    Health monitoring is nowadays one of the hottest markets due to the increasing interest in prevention and treatment of physical problems. In this context the development of wearable, wireless, open-source, and nonintrusive sensing solutions is still an open problem. Indeed, most of the existing commercial architectures are closed and provide little flexibility. In this paper, an open hardware architecture for designing a modular wireless sensor node for health monitoring is proposed. By separating the connection and sensing functions in two separate boards, compliant with the IEEE1451 standard, we add plug and play capabilities to analog transducers, while granting at the same time a high level of customization. As an additional contribution of the work, we developed a cosimulation tool which simplifies the physical connection with the hardware devices and provides support for complex systems. Finally, a wireless body area network for fall detection and health monitoring, based on wireless node prototypes realized according to the proposed architecture, is presented as an application scenario

    Cyber-physical manufacturing systems: An architecture for sensor integration, production line simulation and cloud services

    Get PDF
    none9noThe pillars of Industry 4.0 require the integration of a modern smart factory, data storage in the Cloud, access to the Cloud for data analytics, and information sharing at the software level for simulation and hardware-in-the-loop (HIL) capabilities. The resulting cyber-physical system (CPS) is often termed the cyber-physical manufacturing system, and it has become crucial to cope with this increased system complexity and to attain the desired performances. However, since a great number of old production systems are based on monolithic architectures with limited external communication ports and reduced local computational capabilities, it is difficult to ensure such production lines are compliant with the Industry 4.0 pillars. A wireless sensor network is one solution for the smart connection of a production line to a CPS elaborating data through cloud computing. The scope of this research work lies in developing a modular software architecture based on the open service gateway initiative framework, which is able to seamlessly integrate both hardware and software wireless sensors, send data into the Cloud for further data analysis and enable both HIL and cloud computing capabilities. The CPS architecture was initially tested using HIL tools before it was deployed within a real manufacturing line for data collection and analysis over a period of two months.openPrist Mariorosario; Monteriu' Andrea; Pallotta Emanuele; Cicconi Paolo; Freddi Alessandro; Giuggioloni Federico; Caizer Eduard; Verdini Carlo; Longhi SauroPrist, Mariorosario; Monteriu', Andrea; Pallotta, Emanuele; Cicconi, Paolo; Freddi, Alessandro; Giuggioloni, Federico; Caizer, Eduard; Verdini, Carlo; Longhi, Saur

    Internet of Things Architectures, Technologies, Applications, Challenges, and Future Directions for Enhanced Living Environments and Healthcare Systems: A Review

    Get PDF
    Internet of Things (IoT) is an evolution of the Internet and has been gaining increased attention from researchers in both academic and industrial environments. Successive technological enhancements make the development of intelligent systems with a high capacity for communication and data collection possible, providing several opportunities for numerous IoT applications, particularly healthcare systems. Despite all the advantages, there are still several open issues that represent the main challenges for IoT, e.g., accessibility, portability, interoperability, information security, and privacy. IoT provides important characteristics to healthcare systems, such as availability, mobility, and scalability, that o er an architectural basis for numerous high technological healthcare applications, such as real-time patient monitoring, environmental and indoor quality monitoring, and ubiquitous and pervasive information access that benefits health professionals and patients. The constant scientific innovations make it possible to develop IoT devices through countless services for sensing, data fusing, and logging capabilities that lead to several advancements for enhanced living environments (ELEs). This paper reviews the current state of the art on IoT architectures for ELEs and healthcare systems, with a focus on the technologies, applications, challenges, opportunities, open-source platforms, and operating systems. Furthermore, this document synthesizes the existing body of knowledge and identifies common threads and gaps that open up new significant and challenging future research directions.info:eu-repo/semantics/publishedVersio

    A review of the role of sensors in mobile context-aware recommendation systems

    Get PDF
    Recommendation systems are specialized in offering suggestions about specific items of different types (e.g., books, movies, restaurants, and hotels) that could be interesting for the user. They have attracted considerable research attention due to their benefits and also their commercial interest. Particularly, in recent years, the concept of context-aware recommendation system has appeared to emphasize the importance of considering the context of the situations in which the user is involved in order to provide more accurate recommendations. The detection of the context requires the use of sensors of different types, which measure different context variables. Despite the relevant role played by sensors in the development of context-aware recommendation systems, sensors and recommendation approaches are two fields usually studied independently. In this paper, we provide a survey on the use of sensors for recommendation systems. Our contribution can be seen from a double perspective. On the one hand, we overview existing techniques used to detect context factors that could be relevant for recommendation. On the other hand, we illustrate the interest of sensors by considering different recommendation use cases and scenarios
    corecore