4 research outputs found

    Latency upper bound for data chains of real-time periodic tasks

    Get PDF
    International audienceThe inter-task communication in embedded real-time systems can be achieved using various patterns and be subject to different timing constraints. One of the most basic communication patterns encountered in today's automotive and aerospace software is the data chain. Each task of the chain reads data from the previous task and delivers the results of its computation to the next task. The data passing does not affect the execution of the tasks that are activated periodically at their own rates. As there is no task synchronization, a task does not wait for its predecessor data; it may execute with old data and get new data at its later release. From the design stage of embedded real-time systems, evaluating if data chains meet their timing requirements, such as the latency constraint, is of the highest importance. The trade-off between accuracy and complexity of the timing analysis is a critical element in the optimization process. In this paper, we consider data chains of real-time periodic tasks executed by a fixed-priority preemptive scheduler upon a single processor. We present a method for the worst-case latency calculation of periodic tasks' data chains. As the method has an exponential time complexity, we derive a polynomial-time upper bound. Evaluations carried out on an automotive benchmark demonstrate that the average bound overestimation is less than 10 percent of the actual value

    The Interplay of Reward and Energy in Real-Time Systems

    Get PDF
    This work contends that three constraints need to be addressed in the context of power-aware real-time systems: energy, time and task rewards/values. These issues are studied for two types of systems. First, embedded systems running applications that will include temporal requirements (e.g., audio and video). Second, servers and server clusters that have timing constraints and Quality of Service (QoS) requirements implied by the application being executed (e.g., signal processing, audio/video streams, webpages). Furthermore, many future real-time systems will rely on different software versions to achieve a variety of QoS-aware tradeoffs, each with different rewards, time and energy requirements.For hard real-time systems, solutions are proposed that maximize the system reward/profit without exceeding the deadlines and without depleting the energy budget (in portable systems the energy budget is determined by the battery charge, while in server farms it is dependent on the server architecture and heat/cooling constraints). Both continuous and discrete reward and power models are studied, and the reward/energy analysis is extended with multiple task versions, optional/mandatory tasks and long-term reward maximization policies.For soft real-time systems, the reward model is relaxed into a QoS constraint, and stochastic schemes are first presented for power management of systems with unpredictable workloads. Then, load distribution and power management policies are addressed in the context of servers and homogeneous server farms. Finally, the work is extended with QoS-aware local and global policies for the general case of heterogeneous systems
    corecore