33 research outputs found

    3D oceanographic data compression using 3D-ODETLAP

    Get PDF
    This paper describes a 3D environmental data compression technique for oceanographic datasets. With proper point selection, our method approximates uncompressed marine data using an over-determined system of linear equations based on, but essentially different from, the Laplacian partial differential equation. Then this approximation is refined via an error metric. These two steps work alternatively until a predefined satisfying approximation is found. Using several different datasets and metrics, we demonstrate that our method has an excellent compression ratio. To further evaluate our method, we compare it with 3D-SPIHT. 3D-ODETLAP averages 20% better compression than 3D-SPIHT on our eight test datasets, from World Ocean Atlas 2005. Our method provides up to approximately six times better compression on datasets with relatively small variance. Meanwhile, with the same approximate mean error, we demonstrate a significantly smaller maximum error compared to 3D-SPIHT and provide a feature to keep the maximum error under a user-defined limit

    An Interactive Tool to Explore and Improve the Ply Number of Drawings

    Full text link
    Given a straight-line drawing Γ\Gamma of a graph G=(V,E)G=(V,E), for every vertex vv the ply disk DvD_v is defined as a disk centered at vv where the radius of the disk is half the length of the longest edge incident to vv. The ply number of a given drawing is defined as the maximum number of overlapping disks at some point in R2\mathbb{R}^2. Here we present a tool to explore and evaluate the ply number for graphs with instant visual feedback for the user. We evaluate our methods in comparison to an existing ply computation by De Luca et al. [WALCOM'17]. We are able to reduce the computation time from seconds to milliseconds for given drawings and thereby contribute to further research on the ply topic by providing an efficient tool to examine graphs extensively by user interaction as well as some automatic features to reduce the ply number.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined Neighborhood

    Get PDF
    OpenStreetMap provides a valuable crowd-sourced database of raw geospatial data for constructing models of urban street networks for scientific analysis. This paper reports results from a research project that collected raw street network data from OpenStreetMap using the Python-based OSMnx software for every U.S. city and town, county, urbanized area, census tract, and Zillow-defined neighborhood. It constructed nonplanar directed multigraphs for each and analyzed their structural and morphological characteristics. The resulting data repository contains over 110,000 processed, cleaned street network graphs (which in turn comprise over 55 million nodes and over 137 million edges) at various scales—comprehensively covering the entire U.S.—archived as reusable open-source GraphML files, node/edge lists, and GIS shapefiles that can be immediately loaded and analyzed in standard tools such as ArcGIS, QGIS, NetworkX, graph-tool, igraph, or Gephi. The repository also contains measures of each network’s metric and topological characteristics common in urban design, transportation planning, civil engineering, and network science. No other such dataset exists. These data offer researchers and practitioners a new ability to quickly and easily conduct graph-theoretic circulation network analysis anywhere in the U.S. using standard, free, open-source tools. Document type: Articl

    Cyber–Physical–Social Frameworks for Urban Big Data Systems: A Survey

    Get PDF
    The integration of things’ data on the Web and Web linking for things’ description and discovery is leading the way towards smart Cyber–Physical Systems (CPS). The data generated in CPS represents observations gathered by sensor devices about the ambient environment that can be manipulated by computational processes of the cyber world. Alongside this, the growing use of social networks offers near real-time citizen sensing capabilities as a complementary information source. The resulting Cyber–Physical–Social System (CPSS) can help to understand the real world and provide proactive services to users. The nature of CPSS data brings new requirements and challenges to different stages of data manipulation, including identification of data sources, processing and fusion of different types and scales of data. To gain an understanding of the existing methods and techniques which can be useful for a data-oriented CPSS implementation, this paper presents a survey of the existing research and commercial solutions. We define a conceptual framework for a data-oriented CPSS and detail the various solutions for building human–machine intelligence

    Multifaceted Geotagging for Streaming News

    Get PDF
    News sources on the Web generate constant streams of information, describing the events that shape our world. In particular, geography plays a key role in the news, and understanding the geographic information present in news allows for its useful spatial browsing and retrieval. This process of understanding is called geotagging, and involves first finding in the document all textual references to geographic locations, known as toponyms, and second, assigning the correct lat/long values to each toponym, steps which are termed toponym recognition and toponym resolution, respectively. These steps are difficult due to ambiguities in natural language: some toponyms share names with non-location entities, and further, a given toponym can have many location interpretations. Removing these ambiguities is crucial for successful geotagging. To this end, geotagging methods are described which were developed for streaming news. First, a spatio-textual search engine named STEWARD, and an interactive map-based news browsing system named NewsStand are described, which feature geotaggers as central components, and served as motivating systems and experimental testbeds for developing geotagging methods. Next, a geotagging methodology is presented that follows a multifaceted approach involving a variety of techniques. First, a multifaceted toponym recognition process is described that uses both rule-based and machine learning–based methods to ensure high toponym recall. Next, various forms of toponym resolution evidence are explored. One such type of evidence is lists of toponyms, termed comma groups, whose toponyms share a common thread in their geographic properties that enables correct resolution. In addition to explicit evidence, authors take advantage of the implicit geographic knowledge of their audiences. Understanding the local places known by an audience, termed its local lexicon, affords great performance gains when geotagging articles from local newspapers, which account for the vast majority of news on the Web. Finally, considering windows of text of varying size around each toponym, termed adaptive context, allows for a tradeoff between geotagging execution speed and toponym resolution accuracy. Extensive experimental evaluations of all the above methods, using existing and two newly-created, large corpora of streaming news, show great performance gains over several competing prominent geotagging methods

    Advanced Location-Based Technologies and Services

    Get PDF
    Since the publication of the first edition in 2004, advances in mobile devices, positioning sensors, WiFi fingerprinting, and wireless communications, among others, have paved the way for developing new and advanced location-based services (LBSs). This second edition provides up-to-date information on LBSs, including WiFi fingerprinting, mobile computing, geospatial clouds, geospatial data mining, location privacy, and location-based social networking. It also includes new chapters on application areas such as LBSs for public health, indoor navigation, and advertising. In addition, the chapter on remote sensing has been revised to address advancements

    Context Awareness for Navigation Applications

    Get PDF
    This thesis examines the topic of context awareness for navigation applications and asks the question, “What are the benefits and constraints of introducing context awareness in navigation?” Context awareness can be defined as a computer’s ability to understand the situation or context in which it is operating. In particular, we are interested in how context awareness can be used to understand the navigation needs of people using mobile computers, such as smartphones, but context awareness can also benefit other types of navigation users, such as maritime navigators. There are countless other potential applications of context awareness, but this thesis focuses on applications related to navigation. For example, if a smartphone-based navigation system can understand when a user is walking, driving a car, or riding a train, then it can adapt its navigation algorithms to improve positioning performance. We argue that the primary set of tools available for generating context awareness is machine learning. Machine learning is, in fact, a collection of many different algorithms and techniques for developing “computer systems that automatically improve their performance through experience” [1]. This thesis examines systematically the ability of existing algorithms from machine learning to endow computing systems with context awareness. Specifically, we apply machine learning techniques to tackle three different tasks related to context awareness and having applications in the field of navigation: (1) to recognize the activity of a smartphone user in an indoor office environment, (2) to recognize the mode of motion that a smartphone user is undergoing outdoors, and (3) to determine the optimal path of a ship traveling through ice-covered waters. The diversity of these tasks was chosen intentionally to demonstrate the breadth of problems encompassed by the topic of context awareness. During the course of studying context awareness, we adopted two conceptual “frameworks,” which we find useful for the purpose of solidifying the abstract concepts of context and context awareness. The first such framework is based strongly on the writings of a rhetorician from Hellenistic Greece, Hermagoras of Temnos, who defined seven elements of “circumstance”. We adopt these seven elements to describe contextual information. The second framework, which we dub the “context pyramid” describes the processing of raw sensor data into contextual information in terms of six different levels. At the top of the pyramid is “rich context”, where the information is expressed in prose, and the goal for the computer is to mimic the way that a human would describe a situation. We are still a long way off from computers being able to match a human’s ability to understand and describe context, but this thesis improves the state-of-the-art in context awareness for navigation applications. For some particular tasks, machine learning has succeeded in outperforming humans, and in the future there are likely to be tasks in navigation where computers outperform humans. One example might be the route optimization task described above. This is an example of a task where many different types of information must be fused in non-obvious ways, and it may be that computer algorithms can find better routes through ice-covered waters than even well-trained human navigators. This thesis provides only preliminary evidence of this possibility, and future work is needed to further develop the techniques outlined here. The same can be said of the other two navigation-related tasks examined in this thesis
    corecore