35 research outputs found

    Secured Framework for Smart Farming in Hydroponics with Intelligent and Precise Management based on IoT with Blockchain Technology

    Get PDF
    Hydroponics is a type of soil-free farming that uses less water and other resources than conventional soil-based farming methods. However, due to the simultaneous supervision of multiple factors, nutrition advice, and plant diagnosis system, monitoring hydroponics farming is a difficult task. Hydroponic techniques utilizing the IoT show to deliver the finest outcomes, despite the usage of various artificial culture methods. Though, the usage of smart communication technologies and IoT exposes environments for smart farming to a wide range of cybersecurity risks and weaknesses. However, the adoption of intelligence-based controlling algorithms in the agricultural industry is a good use of current technical advancements to address these issues. This paper presented a secured framework for smart farming in hydroponics system. The proposed architecture is characterized into four-layer IoT based framework, sensor, communication, fog and cloud layer. Data analytics is performed using supervised machine learning techniques with intelligent and precise management and is applied at the fog layer for efficient computation over the cloud layer. The data security over channel is protected by using Blockchain Technology. The experimental results are evaluated and analyzed for several statistical parameters in order to improve the system efficacy

    PALMAR: Towards Adaptive Multi-inhabitant Activity Recognition in Point-Cloud Technology

    Full text link
    With the advancement of deep neural networks and computer vision-based Human Activity Recognition, employment of Point-Cloud Data technologies (LiDAR, mmWave) has seen a lot interests due to its privacy preserving nature. Given the high promise of accurate PCD technologies, we develop, PALMAR, a multiple-inhabitant activity recognition system by employing efficient signal processing and novel machine learning techniques to track individual person towards developing an adaptive multi-inhabitant tracking and HAR system. More specifically, we propose (i) a voxelized feature representation-based real-time PCD fine-tuning method, (ii) efficient clustering (DBSCAN and BIRCH), Adaptive Order Hidden Markov Model based multi-person tracking and crossover ambiguity reduction techniques and (iii) novel adaptive deep learning-based domain adaptation technique to improve the accuracy of HAR in presence of data scarcity and diversity (device, location and population diversity). We experimentally evaluate our framework and systems using (i) a real-time PCD collected by three devices (3D LiDAR and 79 GHz mmWave) from 6 participants, (ii) one publicly available 3D LiDAR activity data (28 participants) and (iii) an embedded hardware prototype system which provided promising HAR performances in multi-inhabitants (96%) scenario with a 63% improvement of multi-person tracking than state-of-art framework without losing significant system performances in the edge computing device.Comment: Accepted in IEEE International Conference on Computer Communications 202

    Applications of ontology in the Internet of Things: a systematic analysis

    Get PDF
    Ontology has been increasingly implemented to facilitate the Internet of Things (IoT) activities, such as tracking and information discovery, storage, information exchange, and object addressing. However, a complete understanding of using ontology in the IoT mechanism remains lacking. The main goal of this research is to recognize the use of ontology in the IoT process and investigate the services of ontology in IoT activities. A systematic literature review (SLR) is conducted using predefined protocols to analyze the literature about the usage of ontologies in IoT. The following conclusions are obtained from the SLR. (1) Primary studies (i.e., selected 115 articles) have addressed the need to use ontologies in IoT for industries and the academe, especially to minimize interoperability and integration of IoT devices. (2) About 31.30% of extant literature discussed ontology development concerning the IoT interoperability issue, while IoT privacy and integration issues are partially discussed in the literature. (3) IoT styles of modeling ontologies are diverse, whereas 35.65% of total studies adopted the OWL style. (4) The 32 articles (i.e., 27.83% of the total studies) reused IoT ontologies to handle diverse IoT methodologies. (5) A total of 45 IoT ontologies are well acknowledged, but the IoT community has widely utilized none. An in-depth analysis of different IoT ontologies suggests that the existing ontologies are beneficial in designing new IoT ontology or achieving three main requirements of the IoT field: interoperability, integration, and privacy. This SLR is finalized by identifying numerous validity threats and future directions

    Road Infrastructure Challenges Faced by Automated Driving: A Review

    Get PDF
    Automated driving can no longer be referred to as hype or science fiction but rather a technology that has been gradually introduced to the market. The recent activities of regulatory bodies and the market penetration of automated driving systems (ADS) demonstrate that society is exhibiting increasing interest in this field and gradually accepting new methods of transport. Automated driving, however, does not depend solely on the advances of onboard sensor technology or artificial intelligence (AI). One of the essential factors in achieving trust and safety in automated driving is road infrastructure, which requires careful consideration. Historically, the development of road infrastructure has been guided by human perception, but today we are at a turning point at which this perspective is not sufficient. In this study, we review the limitations and advances made in the state of the art of automated driving technology with respect to road infrastructure in order to identify gaps that are essential for bridging the transition from human control to self-driving. The main findings of this study are grouped into the following five clusters, characterised according to challenges that must be faced in order to cope with future mobility: international harmonisation of traffic signs and road markings, revision of the maintenance of the road infrastructure, review of common design patterns, digitalisation of road networks, and interdisciplinarity. The main contribution of this study is the provision of a clear and concise overview of the interaction between road infrastructure and ADS as well as the support of international activities to define the requirements of road infrastructure for the successful deployment of ADS

    A systematic literature review

    Get PDF
    Bahaa, A., Abdelaziz, A., Sayed, A., Elfangary, L., & Fahmy, H. (2021). Monitoring real time security attacks for iot systems using devsecops: A systematic literature review. Information (Switzerland), 12(4), 1-23. [154]. https://doi.org/10.3390/info12040154In many enterprises and the private sector, the Internet of Things (IoT) has spread globally. The growing number of different devices connected to the IoT and their various protocols have contributed to the increasing number of attacks, such as denial-of-service (DoS) and remote-to-local (R2L) ones. There are several approaches and techniques that can be used to construct attack detection models, such as machine learning, data mining, and statistical analysis. Nowadays, this technique is commonly used because it can provide precise analysis and results. Therefore, we decided to study the previous literature on the detection of IoT attacks and machine learning in order to understand the process of creating detection models. We also evaluated various datasets used for the models, IoT attack types, independent variables used for the models, evaluation metrics for assessment of models, and monitoring infrastructure using DevSecOps pipelines. We found 49 primary studies, and the detection models were developed using seven different types of machine learning techniques. Most primary studies used IoT device testbed datasets, and others used public datasets such as NSL-KDD and UNSW-NB15. When it comes to measuring the efficiency of models, both numerical and graphical measures are commonly used. Most IoT attacks occur at the network layer according to the literature. If the detection models applied DevSecOps pipelines in development processes for IoT devices, they were more secure. From the results of this paper, we found that machine learning techniques can detect IoT attacks, but there are a few issues in the design of detection models. We also recommend the continued use of hybrid frameworks for the improved detection of IoT attacks, advanced monitoring infrastructure configurations using methods based on software pipelines, and the use of machine learning techniques for advanced supervision and monitoring.publishersversionpublishe

    Energy-Efficient IoT e-Health Using Artificial Intelligence Model with Homomorphic Secret Sharing

    Full text link
    [EN] Internet of Things (IoT) is a developing technology for supporting heterogeneous physical objects into smart things and improving the individuals living using wireless communication systems. Recently, many smart healthcare systems are based on the Internet of Medical Things (IoMT) to collect and analyze the data for infectious diseases, i.e., body fever, flu, COVID-19, shortness of breath, etc. with the least operation cost. However, the most important research challenges in such applications are storing the medical data on a secured cloud and make the disease diagnosis system more energy efficient. Additionally, the rapid explosion of IoMT technology has involved many cyber-criminals and continuous attempts to compromise medical devices with information loss and generating bogus certificates. Thus, the increase in modern technologies for healthcare applications based on IoMT, securing health data, and offering trusted communication against intruders is gaining much research attention. Therefore, this study aims to propose an energy-efficient IoT e-health model using artificial intelligence with homomorphic secret sharing, which aims to increase the maintainability of disease diagnosis systems and support trustworthy communication with the integration of the medical cloud. The proposed model is analyzed and proved its significance against relevant systems.Prince Sultan University, Riyadh Saudi Arabia, (SEED-CCIS-2021{85}) under Artificial Intelligence & Data Analytics Research Lab. CCIS.Rehman, A.; Saba, T.; Haseeb, K.; Marie-Sainte, SL.; Lloret, J. (2021). Energy-Efficient IoT e-Health Using Artificial Intelligence Model with Homomorphic Secret Sharing. Energies. 14(19):1-15. https://doi.org/10.3390/en14196414S115141

    On the Reliability Assessment of Artificial Neural Networks Running on AI-Oriented MPSoCs

    Get PDF
    Nowadays, the usage of electronic devices running artificial neural networks (ANNs)-based applications is spreading in our everyday life. Due to their outstanding computational capabilities, ANNs have become appealing solutions for safety-critical systems as well. Frequently, they are considered intrinsically robust and fault tolerant for being brain-inspired and redundant computing models. However, when ANNs are deployed on resource-constrained hardware devices, single physical faults may compromise the activity of multiple neurons. Therefore, it is crucial to assess the reliability of the entire neural computing system, including both the software and the hardware components. This article systematically addresses reliability concerns for ANNs running on multiprocessor system-on-a-chips (MPSoCs). It presents a methodology to assign resilience scores to individual neurons and, based on that, schedule the workload of an ANN on the target MPSoC so that critical neurons are neatly distributed among the available processing elements. This reliability-oriented methodology exploits an integer linear programming solver to find the optimal solution. Experimental results are given for three different convolutional neural networks trained on MNIST, SVHN, and CIFAR-10. We carried out a comprehensive assessment on an open-source artificial intelligence-based RISC-V MPSoC. The results show the reliability improvements of the proposed methodology against the traditional scheduling

    Applications of ontology in the internet of things: A systematic analysis

    Get PDF
    Ontology has been increasingly implemented to facilitate the Internet of Things (IoT) activities, such as tracking and information discovery, storage, information exchange, and object addressing. However, a complete understanding of using ontology in the IoT mechanism remains lacking. The main goal of this research is to recognize the use of ontology in the IoT process and investigate the services of ontology in IoT activities. A systematic literature review (SLR) is conducted using predefined protocols to analyze the literature about the usage of ontologies in IoT. The following conclusions are obtained from the SLR. (1) Primary studies (i.e., selected 115 articles) have addressed the need to use ontologies in IoT for industries and the academe, especially to minimize interoperability and integration of IoT devices. (2) About 31.30% of extant literature discussed ontology development concerning the IoT interoperability issue, while IoT privacy and integration issues are partially discussed in the literature. (3) IoT styles of modeling ontologies are diverse, whereas 35.65% of total studies adopted the OWL style. (4) The 32 articles (i.e., 27.83% of the total studies) reused IoT ontologies to handle diverse IoT methodologies. (5) A total of 45 IoT ontologies are well acknowledged, but the IoT community has widely utilized none. An in-depth analysis of different IoT ontologies suggests that the existing ontologies are beneficial in designing new IoT ontology or achieving three main requirements of the IoT field: interoperability, integration, and privacy. This SLR is finalized by identifying numerous validity threats and future directions

    Power Line Monitoring through Data Integrity Analysis with Q-Learning Based Data Analysis Network

    Get PDF
    To monitor and handle big data obtained from electrical, electronic, electro-mechanical, and other equipment linked to the power grid effectively and efficiently, it is important to monitor them continually to gather information on power line integrity. We propose that data transmission analysis and data collection from tools like digital power meters may be used to undertake predictive maintenance on power lines without the need for specialized hardware like power line modems and synthetic data streams. Neural network models such as deep learning may be used for power line integrity analysis systems effectively, safely, and reliably. We adopt Q-learning based data analysis network for analyzing and monitoring power line integrity. The results of experiments performed over 32 km long power line under different scenarios are presented. The proposed framework may be useful for monitoring traditional power lines as well as alternative energy source parks and large users like industries. We discovered that the quantity of data transferred changes based on the problem and the size of the planned data packet. When all phases were absent from all meters, we noted a significant decrease in the amount of data collected from the power line of interest. This implies that there is a power outage during the monitoring. When even one phase is reconnected, we only obtain a portion of the information and a solution to interpret this was necessary. Our Q-network was able to identify and classify simulated 190 entire power outages and 700 single phase outages. The mean square error (MSE) did not exceed 0.10% of the total number of instances, and the MSE of the smart meters for a complete disturbance was only 0.20%, resulting in an average number of conceivable cases of errors and disturbances of 0.12% for the whole operation.publishedVersio
    corecore