6,829 research outputs found

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    SL: a "quick and dirty" but working intermediate language for SVP systems

    Get PDF
    The CSA group at the University of Amsterdam has developed SVP, a framework to manage and program many-core and hardware multithreaded processors. In this article, we introduce the intermediate language SL, a common vehicle to program SVP platforms. SL is designed as an extension to the standard C language (ISO C99/C11). It includes primitive constructs to bulk create threads, bulk synchronize on termination of threads, and communicate using word-sized dataflow channels between threads. It is intended for use as target language for higher-level parallelizing compilers. SL is a research vehicle; as of this writing, it is the only interface language to program a main SVP platform, the new Microgrid chip architecture. This article provides an overview of the language, to complement a detailed specification available separately.Comment: 22 pages, 3 figures, 18 listings, 1 tabl

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation using Deep Neural Networks

    Full text link
    Predicting the number of clock cycles a processor takes to execute a block of assembly instructions in steady state (the throughput) is important for both compiler designers and performance engineers. Building an analytical model to do so is especially complicated in modern x86-64 Complex Instruction Set Computer (CISC) machines with sophisticated processor microarchitectures in that it is tedious, error prone, and must be performed from scratch for each processor generation. In this paper we present Ithemal, the first tool which learns to predict the throughput of a set of instructions. Ithemal uses a hierarchical LSTM--based approach to predict throughput based on the opcodes and operands of instructions in a basic block. We show that Ithemal is more accurate than state-of-the-art hand-written tools currently used in compiler backends and static machine code analyzers. In particular, our model has less than half the error of state-of-the-art analytical models (LLVM's llvm-mca and Intel's IACA). Ithemal is also able to predict these throughput values just as fast as the aforementioned tools, and is easily ported across a variety of processor microarchitectures with minimal developer effort.Comment: Published at 36th International Conference on Machine Learning (ICML) 201

    Towards an Achievable Performance for the Loop Nests

    Full text link
    Numerous code optimization techniques, including loop nest optimizations, have been developed over the last four decades. Loop optimization techniques transform loop nests to improve the performance of the code on a target architecture, including exposing parallelism. Finding and evaluating an optimal, semantic-preserving sequence of transformations is a complex problem. The sequence is guided using heuristics and/or analytical models and there is no way of knowing how close it gets to optimal performance or if there is any headroom for improvement. This paper makes two contributions. First, it uses a comparative analysis of loop optimizations/transformations across multiple compilers to determine how much headroom may exist for each compiler. And second, it presents an approach to characterize the loop nests based on their hardware performance counter values and a Machine Learning approach that predicts which compiler will generate the fastest code for a loop nest. The prediction is made for both auto-vectorized, serial compilation and for auto-parallelization. The results show that the headroom for state-of-the-art compilers ranges from 1.10x to 1.42x for the serial code and from 1.30x to 1.71x for the auto-parallelized code. These results are based on the Machine Learning predictions.Comment: Accepted at the 31st International Workshop on Languages and Compilers for Parallel Computing (LCPC 2018

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    CU2CL: A CUDA-to-OpenCL Translator for Multi- and Many-core Architectures

    Get PDF
    The use of graphics processing units (GPUs) in high-performance parallel computing continues to become more prevalent, often as part of a heterogeneous system. For years, CUDA has been the de facto programming environment for nearly all general-purpose GPU (GPGPU) applications. In spite of this, the framework is available only on NVIDIA GPUs, traditionally requiring reimplementation in other frameworks in order to utilize additional multi- or many-core devices. On the other hand, OpenCL provides an open and vendorneutral programming environment and runtime system. With implementations available for CPUs, GPUs, and other types of accelerators, OpenCL therefore holds the promise of a “write once, run anywhere” ecosystem for heterogeneous computing. Given the many similarities between CUDA and OpenCL, manually porting a CUDA application to OpenCL is typically straightforward, albeit tedious and error-prone. In response to this issue, we created CU2CL, an automated CUDA-to- OpenCL source-to-source translator that possesses a novel design and clever reuse of the Clang compiler framework. Currently, the CU2CL translator covers the primary constructs found in CUDA runtime API, and we have successfully translated many applications from the CUDA SDK and Rodinia benchmark suite. The performance of our automatically translated applications via CU2CL is on par with their manually ported countparts
    corecore