20 research outputs found

    A Comprehensive Review on Time Sensitive Networks with a Special Focus on Its Applicability to Industrial Smart and Distributed Measurement Systems

    Get PDF
    The groundbreaking transformations triggered by the Industry 4.0 paradigm have dramati-cally reshaped the requirements for control and communication systems within the factory systems of the future. The aforementioned technological revolution strongly affects industrial smart and distributed measurement systems as well, pointing to ever more integrated and intelligent equipment devoted to derive accurate measurements. Moreover, as factory automation uses ever wider and complex smart distributed measurement systems, the well-known Internet of Things (IoT) paradigm finds its viability also in the industrial context, namely Industrial IoT (IIoT). In this context, communication networks and protocols play a key role, directly impacting on the measurement accuracy, causality, reliability and safety. The requirements coming both from Industry 4.0 and the IIoT, such as the coexistence of time-sensitive and best effort traffic, the need for enhanced horizontal and vertical integration, and interoperability between Information Technology (IT) and Operational Technology (OT), fostered the development of enhanced communication subsystems. Indeed, established tech-nologies, such as Ethernet and Wi-Fi, widespread in the consumer and office fields, are intrinsically non-deterministic and unable to support critical traffic. In the last years, the IEEE 802.1 Working Group defined an extensive set of standards, comprehensively known as Time Sensitive Networking (TSN), aiming at reshaping the Ethernet standard to support for time-, mission-and safety-critical traffic. In this paper, a comprehensive overview of the TSN Working Group standardization activity is provided, while contextualizing TSN within the complex existing industrial technological panorama, particularly focusing on industrial distributed measurement systems. In particular, this paper has to be considered a technical review of the most important features of TSN, while underlining its applicability to the measurement field. Furthermore, the adoption of TSN within the Wi-Fi technology is addressed in the last part of the survey, since wireless communication represents an appealing opportunity in the industrial measurement context. In this respect, a test case is presented, to point out the need for wirelessly connected sensors networks. In particular, by reviewing some literature contributions it has been possible to show how wireless technologies offer the flexibility necessary to support advanced mobile IIoT applications

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Time Sensitive Networking Protocol Implementation for Linux End Equipment

    Get PDF
    By bringing industrial-grade robustness and reliability to Ethernet, Time Sensitive Networking (TSN) offers an IEEE standard communication technology that enables interoperability between standard-conformant industrial devices from any vendor. It also eliminates the need for physical separation of critical and non-critical communication networks, which allows a direct exchange of data between operation centers and companies, a concept at the heart of the Industrial Internet of Things (IIoT). This article describes creating an end-to-end TSN network using specialized PCI Express (PCIe) cards and two final Linux endpoints. For this purpose, the two primary standards of TSN, IEEE 802.1AS (regarding clock synchronization), and IEEE 802.1Qbv (regarding time scheduled traffic) have been implemented in Linux equipment as well as a configuration and monitoring system.This work has been supported by the Ministerio de Economía y Competitividad of Spain within the project TEC2017-84011-R and FEDER funds as well as by the Department of Education of the Basque Government within the fund for research groups of the Basque university system IT978-16

    Comparison between Different Channel Coding Techniques for IEEE 802.11be within Factory Automation Scenarios

    Get PDF
    This paper presents improvements in the physical layer reliability of the IEEE 802.11be standard. Most wireless system proposals do not fulfill the stringent requirements of Factory Automation use cases. The harsh propagation features of industrial environments usually require time retransmission techniques to guarantee link reliability. At the same time, retransmissions compromise latency. IEEE 802.11be, the upcoming WLAN standard, is being considered for Factory Automation (FA) communications. 802.11be addresses specifically latency and reliability difficulties, typical in the previous 802.11 standards. This paper evaluates different channel coding techniques potentially applicable in IEEE 802.11be. The methods suggested here are the following: WLAN LDPC, WLAN Convolutional Codes (CC), New Radio (NR) Polar, and Long Term Evolution (LTE)-based Turbo Codes. The tests consider an IEEE 802.11be prototype under the Additive White Gaussian Noise (AWGN) channel and industrial channel models. The results suggest that the best performing codes in factory automation cases are the WLAN LDPCs and New Radio Polar Codes.This work was supported in part by the Basque Government under Grant IT1234-19, in part by the PREDOC under Grant PRE2019_099407, and in part by the Spanish Government through project PHANTOM (MCIU/AEI/FEDER, UE) under Grant RTI2018-099162-B-I00

    Application of Wireless Nano Sensors Network and Nanotechnology in Precision Agriculture: Review

    Get PDF
    Due to a series of global issues in recent years, such as the food crisis, the impact of fertilizer on climate change, and improper use of irrigation that’s way precision agriculture is the best solution for alleviating this problem. One of the most important and interesting information technology is the wireless Nanosensor network with the help of Nanotechnology will boost crop productivity, maintain the fertility status of the soil, save the water with precise application of irrigation in the field and minimize the loss of excess fertilizer through the precise application. In this paper, we have surveyed the importance of sensor networks in precision agriculture and the importance of Nanosensors with the help of Nanotechnology for remote monitoring in the various application of the agriculture field. View Article DOI: 10.47856/ijaast.2022.v09i04.00

    Kommunikation und Bildverarbeitung in der Automation

    Get PDF
    In diesem Open-Access-Tagungsband sind die besten Beiträge des 9. Jahreskolloquiums "Kommunikation in der Automation" (KommA 2018) und des 6. Jahreskolloquiums "Bildverarbeitung in der Automation" (BVAu 2018) enthalten. Die Kolloquien fanden am 20. und 21. November 2018 in der SmartFactoryOWL, einer gemeinsamen Einrichtung des Fraunhofer IOSB-INA und der Technischen Hochschule Ostwestfalen-Lippe statt. Die vorgestellten neuesten Forschungsergebnisse auf den Gebieten der industriellen Kommunikationstechnik und Bildverarbeitung erweitern den aktuellen Stand der Forschung und Technik. Die in den Beiträgen enthaltenen anschaulichen Beispiele aus dem Bereich der Automation setzen die Ergebnisse in den direkten Anwendungsbezug

    A review of cyber-ranges and test-beds:current and future trends

    Get PDF
    Cyber situational awareness has been proven to be of value in forming a comprehensive understanding of threats and vulnerabilities within organisations, as the degree of exposure is governed by the prevailing levels of cyber-hygiene and established processes. A more accurate assessment of the security provision informs on the most vulnerable environments that necessitate more diligent management. The rapid proliferation in the automation of cyber-attacks is reducing the gap between information and operational technologies and the need to review the current levels of robustness against new sophisticated cyber-attacks, trends, technologies and mitigation countermeasures has become pressing. A deeper characterisation is also the basis with which to predict future vulnerabilities in turn guiding the most appropriate deployment technologies. Thus, refreshing established practices and the scope of the training to support the decision making of users and operators. The foundation of the training provision is the use of Cyber-Ranges (CRs) and Test-Beds (TBs), platforms/tools that help inculcate a deeper understanding of the evolution of an attack and the methodology to deploy the most impactful countermeasures to arrest breaches. In this paper, an evaluation of documented CR and TB platforms is evaluated. CRs and TBs are segmented by type, technology, threat scenarios, applications and the scope of attainable training. To enrich the analysis of documented CR and TB research and cap the study, a taxonomy is developed to provide a broader comprehension of the future of CRs and TBs. The taxonomy elaborates on the CRs/TBs dimensions, as well as, highlighting a diminishing differentiation between application areas
    corecore