45 research outputs found

    Sensing with Earables: A Systematic Literature Review and Taxonomy of Phenomena

    Get PDF
    Earables have emerged as a unique platform for ubiquitous computing by augmenting ear-worn devices with state-of-the-art sensing. This new platform has spurred a wealth of new research exploring what can be detected on a wearable, small form factor. As a sensing platform, the ears are less susceptible to motion artifacts and are located in close proximity to a number of important anatomical structures including the brain, blood vessels, and facial muscles which reveal a wealth of information. They can be easily reached by the hands and the ear canal itself is affected by mouth, face, and head movements. We have conducted a systematic literature review of 271 earable publications from the ACM and IEEE libraries. These were synthesized into an open-ended taxonomy of 47 different phenomena that can be sensed in, on, or around the ear. Through analysis, we identify 13 fundamental phenomena from which all other phenomena can be derived, and discuss the different sensors and sensing principles used to detect them. We comprehensively review the phenomena in four main areas of (i) physiological monitoring and health, (ii) movement and activity, (iii) interaction, and (iv) authentication and identification. This breadth highlights the potential that earables have to offer as a ubiquitous, general-purpose platform

    The 16th international symposium on wearable computers, ISWC 2012, adjunct proceedings, Newcastle Upon Tyne, UK, June 18-22 2012

    Get PDF

    Seven Years after the Manifesto: Literature Review and Research Directions for Technologies in Animal Computer Interaction

    Get PDF
    As technologies diversify and become embedded in everyday lives, the technologies we expose to animals, and the new technologies being developed for animals within the field of Animal Computer Interaction (ACI) are increasing. As we approach seven years since the ACI manifesto, which grounded the field within Human Computer Interaction and Computer Science, this thematic literature review looks at the technologies developed for (non-human) animals. Technologies that are analysed include tangible and physical, haptic and wearable, olfactory, screen technology and tracking systems. The conversation explores what exactly ACI is whilst questioning what it means to be animal by considering the impact and loop between machine and animal interactivity. The findings of this review are expected to form the first grounding foundation of ACI technologies informing future research in animal computing as well as suggesting future areas for exploratio

    Designing gaze-based interaction for pervasive public displays

    Get PDF
    The last decade witnessed an increasing adoption of public interactive displays. Displays can now be seen in many public areas, such as shopping malls, and train stations. There is also a growing trend towards using large public displays especially in airports, urban areas, universities and libraries. Meanwhile, advances in eye tracking and visual computing promise straightforward integration of eye tracking on these displays for both: 1) monitoring the user's visual behavior to evaluate different aspects of the display, such as measuring the visual attention of passersby, and for 2) interaction purposes, such as allowing users to provide input, retrieve content, or transfer data using their eye movements. Gaze is particularly useful for pervasive public displays. In addition to being natural and intuitive, eye gaze can be detected from a distance, bringing interactivity to displays that are physically unreachable. Gaze reflects the user's intention and visual interests, and its subtle nature makes it well-suited for public interactions where social embarrassment and privacy concerns might hinder the experience. On the downside, eye tracking technologies have traditionally been developed for desktop settings, where a user interacts from a stationary position and for a relatively long period of time. Interaction with public displays is fundamentally different and hence poses unique challenges when employing eye tracking. First, users of public displays are dynamic; users could approach the display from different directions, and interact from different positions or even while moving. This means that gaze-enabled displays should not expect users to be stationary at a specific position, but instead adapt to users' ever-changing position in front of the display. Second, users of public displays typically interact for short durations, often for a few seconds only. This means that contrary to desktop settings, public displays cannot afford requiring users to perform time-consuming calibration prior to interaction. In this publications-based dissertation, we first report on a review of challenges of interactive public displays, and discuss the potential of gaze in addressing these challenges. We then showcase the implementation and in-depth evaluation of two applications where gaze is leveraged to address core problems in today's public displays. The first presents an eye-based solution, EyePACT, that tackles the parallax effect which is often experienced on today's touch-based public displays. We found that EyePACT significantly improves accuracy even with varying degrees of parallax. The second is a novel multimodal system, GTmoPass, that combines gaze and touch input for secure user authentication on public displays. GTmoPass was found to be highly resilient to shoulder surfing, thermal attacks and smudge attacks, thereby offering a secure solution to an important problem on public displays. The second part of the dissertation explores specific challenges of gaze-based interaction with public displays. First, we address the user positioning problem by means of active eye tracking. More specifically, we built a novel prototype, EyeScout, that dynamically moves the eye tracker based on the user's position without augmenting the user. This, in turn, allowed us to study and understand gaze-based interaction with public displays while walking, and when approaching the display from different positions. An evaluation revealed that EyeScout is well perceived by users, and improves the time needed to initiate gaze interaction by 62% compared to state-of-the-art. Second, we propose a system, Read2Calibrate, for calibrating eye trackers implicitly while users read text on displays. We found that although text-based calibration is less accurate than traditional methods, it integrates smoothly while reading and thereby more suitable for public displays. Finally, through our prototype system, EyeVote, we show how to allow users to select textual options on public displays via gaze without calibration. In a field deployment of EyeVote, we studied the trade-off between accuracy and selection speed when using calibration-free selection techniques. We found that users of public displays value faster interactions over accurate ones, and are willing to correct system errors in case of inaccuracies. We conclude by discussing the implications of our findings on the design of gaze-based interaction for public displays, and how our work can be adapted for other domains apart from public displays, such as on handheld mobile devices.In den letzten zehn Jahren wurden vermehrt interaktive Displays in öffentlichen Bereichen wie Einkaufszentren, Flughäfen und Bahnhöfen eingesetzt. Große öffentliche Displays finden sich zunehmend in städtischen Gebieten, beispielsweise in Universitäten und Bibliotheken. Fortschritte in der Eye-Tracking-Technologie und der Bildverarbeitung versprechen eine einfache Integration von Eye-Tracking auf diesen Displays. So kann zum einen das visuelle Verhalten der Benutzer verfolgt und damit ein Display nach verschiedenen Aspekten evaluiert werden. Zum anderen eröffnet Eye-Tracking auf öffentlichen Displays neue Interaktionsmöglichkeiten. Blickbasierte Interaktion ist besonders nützlich für Bildschirme im allgegenwärtigen öffentlichen Raum. Der Blick bietet mehr als eine natürliche und intuitive Interaktionsmethode: Blicke können aus der Ferne erkannt und somit für Interaktion mit sonst unerreichbaren Displays genutzt werden. Aus der Interaktion mit dem Blick (Gaze) lassen sich Absichten und visuelle Interessen der Benutzer ableiten. Dadurch eignet es sich besonders für den öffentlichen Raum, wo Nutzer möglicherweise Datenschutzbedenken haben könnten oder sich bei herkömmlichen Methoden gehemmt fühlen würden in der Öffentlichkeit mit den Displays zu interagieren. Dadurch wird ein uneingeschränktes Nutzererlebnis ermöglicht. Eye-Tracking-Technologien sind jedoch in erster Linie für Desktop-Szenarien entwickelt worden, bei denen ein Benutzer für eine relativ lange Zeitspanne in einer stationären Position mit dem System interagiert. Die Interaktion mit öffentlichen Displays ist jedoch grundlegend anders. Daher gilt es völlig neuartige Herausforderungen zu bewältigen, wenn Eye-Tracking eingesetzt wird. Da sich Nutzer von öffentlichen Displays bewegen, können sie sich dem Display aus verschiedenen Richtungen nähern und sogar währenddessen mit dem Display interagieren. Folglich sollten "Gaze-enabled Displays" nicht davon ausgehen, dass Nutzer sich stets an einer bestimmten Position befinden, sondern sollten sich an die ständig wechselnde Position des Nutzers anpassen können. Zum anderen interagieren Nutzer von öffentlichen Displays üblicherweise nur für eine kurze Zeitspannen von ein paar Sekunden. Eine zeitaufwändige Kalibrierung durch den Nutzer vor der eigentlichen Interaktion ist hier im Gegensatz zu Desktop-Szenarien also nicht adäquat. Diese kumulative Dissertation überprüft zunächst die Herausforderungen interaktiver öffentlicher Displays und diskutiert das Potenzial von blickbasierter Interaktion zu deren Bewältigung. Anschließend wird die Implementierung und eingehende Evaluierung von zwei beispielhaften Anwendungen vorgestellt, bei denen Nutzer durch den Blick mit öffentlichen Displays interagieren. Daraus ergeben sich weitere greifbare Vorteile der blickbasierten Interaktion für öffentliche Display-Kontexte. Bei der ersten Anwendung, EyePACT, steht der Parallaxeneffekt im Fokus, der heutzutage häufig ein Problem auf öffentlichen Displays darstellt, die über Berührung (Touch) gesteuert werden. Die zweite Anwendung ist ein neuartiges multimodales System, GTmoPass, das Gaze- und Touch-Eingabe zur sicheren Benutzerauthentifizierung auf öffentlichen Displays kombiniert. GTmoPass ist sehr widerstandsfähig sowohl gegenüber unerwünschten fremden Blicken als auch gegenüber sogenannten thermischen Angriffen und Schmierangriffen. Es bietet damit eine sichere Lösung für ein wichtiges Sicherheits- und Datenschutzproblem auf öffentlichen Displays. Der zweite Teil der Dissertation befasst sich mit spezifischen Herausforderungen der Gaze-Interaktion mit öffentlichen Displays. Zuerst wird der Aspekt der Benutzerpositionierung durch aktives Eye-Tracking adressiert. Der neuartige Prototyp EyeScout bewegt den Eye-Tracker passend zur Position des Nutzers, ohne dass dieser dafür mit weiteren Geräten oder Sensoren ausgestattet werden muss. Dies ermöglicht blickbasierte Interaktion mit öffentlichen Displays auch in jenen Situationen zu untersuchen und zu verstehen, in denen Nutzer in Bewegung sind und sich dem Display von verschiedenen Positionen aus nähern. Zweitens wird das System Read2Calibrate präsentiert, das Eye-Tracker implizit kalibriert, während Nutzer Texte auf Displays lesen. Der Prototyp EyeVote zeigt, wie man die Auswahl von Textantworten auf öffentlichen Displays per Blick ohne Kalibrierung ermöglichen kann. In einer Feldstudie mit EyeVote wird der Kompromiss zwischen Genauigkeit und Auswahlgeschwindigkeit unter der Verwendung kalibrierungsfreier Auswahltechniken untersucht. Die Implikationen der Ergebnisse für das Design von blickbasierter Interaktion öffentlicher Displays werden diskutiert. Abschließend wird erörtert wie die verwendete Methodik auf andere Bereiche, z.B. auf mobilie Geräte, angewendet werden kann

    Fusion of Smartphone Motion Sensors for Physical Activity Recognition

    Get PDF
    For physical activity recognition, smartphone sensors, such as an accelerometer and a gyroscope, are being utilized in many research studies. So far, particularly, the accelerometer has been extensively studied. In a few recent studies, a combination of a gyroscope, a magnetometer (in a supporting role) and an accelerometer (in a lead role) has been used with the aim to improve the recognition performance. How and when are various motion sensors, which are available on a smartphone, best used for better recognition performance, either individually or in combination? This is yet to be explored. In order to investigate this question, in this paper, we explore how these various motion sensors behave in different situations in the activity recognition process. For this purpose, we designed a data collection experiment where ten participants performed seven different activities carrying smart phones at different positions. Based on the analysis of this data set, we show that these sensors, except the magnetometer, are each capable of taking the lead roles individually, depending on the type of activity being recognized, the body position, the used data features and the classification method employed (personalized or generalized). We also show that their combination only improves the overall recognition performance when their individual performances are not very high, so that there is room for performance improvement. We have made our data set and our data collection application publicly available, thereby making our experiments reproducible

    Computer-supported movement guidance: investigating visual/visuotactile guidance and informing the design of vibrotactile body-worn interfaces

    Get PDF
    This dissertation explores the use of interactive systems to support movement guidance, with applications in various fields such as sports, dance, physiotherapy, and immersive sketching. The research focuses on visual, haptic, and visuohaptic approaches and aims to overcome the limitations of traditional guidance methods, such as dependence on an expert and high costs for the novice. The main contributions of the thesis are (1) an evaluation of the suitability of various types of displays and visualizations of the human body for posture guidance, (2) an investigation into the influence of different viewpoints/perspectives, the addition of haptic feedback, and various movement properties on movement guidance in virtual environments, (3) an investigation into the effectiveness of visuotactile guidance for hand movements in a virtual environment, (4) two in-depth studies of haptic perception on the body to inform the design of wearable and handheld interfaces that leverage tactile output technologies, and (5) an investigation into new interaction techniques for tactile guidance of arm movements. The results of this research advance the state of the art in the field, provide design and implementation insights, and pave the way for new investigations in computer-supported movement guidance
    corecore