5,366 research outputs found

    The OpenPicoAmp : an open-source planar lipid bilayer amplifier for hands-on learning of neuroscience

    Full text link
    Neuroscience education can be promoted by the availability of low cost and engaging teaching materials. To address this issue, we developed an open-source lipid bilayer amplifier, the OpenPicoAmp, which is appropriate for use in introductory courses in biophysics or neurosciences dealing with the electrical properties of the cell membrane. The amplifier is designed using the common lithographic printed circuit board fabrication process and off-the-shelf electronic components. In addition, we propose a specific design for experimental chambers allowing the insertion of a commercially available polytetrafluoroethylene film. This experimental setup can be used in simple experiments in which students monitor the bilayer formation by capacitance measurement and record unitary currents produced by ionic channels like gramicidin A. Used in combination with a low-cost data acquisition board this system provides a complete solution for hands-on lessons, therefore improving the effectiveness in teaching basic neurosciences or biophysics.Comment: 13 pages, 6 figures and supplementary information (9 files including one movie). Added references, added figure, corrected typos, corrected board components list, more detailled implementation documen

    Initial electron-transfer in the reaction center from Rhodobacter sphaeroides.

    Get PDF
    The initial electron transfer steps in the photosynthetic reaction center of the purple bacterium Rhodobacter sphaeroides have been investigated by femtosecond time-resolved spectroscopy. The experimental data taken at various wavelengths demonstrate the existence of at least four intermediate states within the first nanosecond. The difference spectra of the intermediates and transient photodichroism data are fully consistent with a sequential four-step model of the primary electron transfer: Light absorption by the special pair P leads to the state P*. From the excited primary donor P*, the electron is transferred within 3.5 +/- 0.4 ps to the accessory bacteriochlorophyll B. State P+B- decays with a time constant of 0.9 +/- 0.3 ps passing the electron to the bacteriopheophytin H. Finally, the electron is transferred from H- to the quinone QA within 220 +/- 40 ps

    National Scientific Facilities and Their Science Impact on Non-Biomedical Research

    Full text link
    H-index, proposed by Hirsch is a good indicator of the impact of a scientist's research. When evaluating departments, institutions or labs, the importance of h-index can be further enhanced when properly calibrated for size. Particularly acute is the issue of federally funded facilities whose number of actively publishing scientists frequently dwarfs that of academic departments. Recently Molinari and Molinari developed a methodology that shows the h-index has a universal growth rate for large numbers of papers, allowing for meaningful comparisons between institutions. An additional challenge when comparing large institutions is that fields have distinct internal cultures, with different typical rates of publication and citation; biology is more highly cited than physics, which is more highly cited than engineering. For this reason, this study has focused on the physical sciences, engineering, and technology, and has excluded bio-medical research. Comparisons between individual disciplines are reported here to provide contextual framework. Generally, it was found that the universal growth rate of Molinari and Molinari holds well across all the categories considered, testifying to the robustness of both their growth law and our results. The overall goal here is to set the highest standard of comparison for federal investment in science; comparisons are made with the nations preeminent private and public institutions. We find that many among the national facilities compare favorably in research impact with the nations leading universities.Comment: 22 pages, 7 figure

    A perspective on cortical layering and layer-spanning neuronal elements

    Get PDF
    This review article addresses the function of the layers of the cerebral cortex. We develop the perspective that cortical layering needs to be understood in terms of its functional anatomy, i.e., the terminations of synaptic inputs on distinct cellular compartments and their effect on cortical activity. The cortex is a hierarchical structure in which feed forward and feedback pathways have a layer-specific termination pattern. We take the view that the influence of synaptic inputs arriving at different cortical layers can only be understood in terms of their complex interaction with cellular biophysics and the subsequent computation that occurs at the cellular level. We use high-resolution fMRI, which can resolve activity across layers, as a case study for implementing this approach by describing how cognitive events arising from the laminar distribution of inputs can be interpreted by taking into account the properties of neurons that span different layers. This perspective is based on recent advances in measuring subcellular activity in distinct feed-forward and feedback axons and in dendrites as they span across layers
    • …
    corecore