151 research outputs found

    Cross Layer Aware Adaptive MAC based on Knowledge Based Reasoning for Cognitive Radio Computer Networks

    Full text link
    In this paper we are proposing a new concept in MAC layer protocol design for Cognitive radio by combining information held by physical layer and MAC layer with analytical engine based on knowledge based reasoning approach. In the proposed system a cross layer information regarding signal to interference and noise ratio (SINR) and received power are analyzed with help of knowledge based reasoning system to determine minimum power to transmit and size of contention window, to minimize backoff, collision, save power and drop packets. The performance analysis of the proposed protocol indicates improvement in power saving, lowering backoff and significant decrease in number of drop packets. The simulation environment was implement using OMNET++ discrete simulation tool with Mobilty framework and MiXiM simulation library.Comment: 8 page

    Cognitive Adaptive Mac Based on Knowledge Based Reasoning For Cognitive Radio Computer Networks

    Get PDF
    In this paper we are proposing a new concept in MAC layer protocol design for Cognitive radio by combining information held by physical layer and MAC layer with analytical engine based on knowledge based reasoning approach. In the proposed system a cross layer information regarding signal to interference and noise ratio (SINR) and received power are analyzed with help of knowledge based reasoning system to determine minimum power to transmit and size of contention window, to minimize backoff, collision, save power and drop packets. The performance analysis of the proposed protocol indicates improvement in power saving ,lowering backoff and significant decrease in number of drop packets. The simulation environment was implement using OMNET++ discrete simulation tool with Mobilty framework and MiXiM simulation library

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Cognitive Radio Dynamic Access Techniques

    Get PDF

    Quality of Service (QoS) Provisioning in Mobile Ad-Hoc Networks (MANETs)

    Get PDF

    SMARAD - Centre of Excellence in Smart Radios and Wireless Research - Activity Report 2008 - 2010

    Get PDF
    Centre of Excellence in Smart Radios and Wireless Research (SMARAD), originally established with the name Smart and Novel Radios Research Unit, is aiming at world-class research and education in Future radio and antenna systems, Cognitive radio, Millimetre wave and THz techniques, Sensors, and Materials and energy, using its expertise in RF, microwave and millimetre wave engineering, in integrated circuit design for multi-standard radios as well as in wireless communications. SMARAD has the Centre of Excellence in Research status from the Academy of Finland since 2002 (2002-2007 and 2008-2013). Currently SMARAD consists of five research groups from three departments, namely the Department of Radio Science and Engineering, Department of Micro and Nanosciences, and Department of Signal Processing and Acoustics, all within the Aalto University School of Electrical Engineering. The total number of employees within the research unit is about 100 including 8 professors, about 30 senior scientists and about 40 graduate students and several undergraduate students working on their Master thesis. The relevance of SMARAD to the Finnish society is very high considering the high national income from exports of telecommunications and electronics products. The unit conducts basic research but at the same time maintains close co-operation with industry. Novel ideas are applied in design of new communication circuits and platforms, transmission techniques and antenna structures. SMARAD has a well-established network of co-operating partners in industry, research institutes and academia worldwide. It coordinates a few EU projects. The funding sources of SMARAD are diverse including the Academy of Finland, EU, ESA, Tekes, and Finnish and foreign telecommunications and semiconductor industry. As a byproduct of this research SMARAD provides highest-level education and supervision to graduate students in the areas of radio engineering, circuit design and communications through Aalto University and Finnish graduate schools such as Graduate School in Electronics, Telecommunications and Automation (GETA). During years 2008 – 2010, 21 doctor degrees were awarded to the students of SMARAD. In the same period, the SMARAD researchers published 141 refereed journal articles and 333 conference papers

    Soft detection and decoding in wideband CDMA systems

    Get PDF
    A major shift is taking place in the world of telecommunications towards a communications environment where a range of new data services will be available for mobile users. This shift is already visible in several areas of wireless communications, including cellular systems, wireless LANs, and satellite systems. The provision of flexible high-quality wireless data services requires a new approach on both the radio interface specification and the design and the implementation of the various transceiver algorithms. On the other hand, when the processing power available in the receivers increases, more complex receiver algorithms become feasible. The general problem addressed in this thesis is the application of soft detection and decoding algorithms in the wideband code division multiple access (WCDMA) receivers, both in the base stations and in the mobile terminals, so that good performance is achieved but that the computational complexity remains acceptable. In particular, two applications of soft detection and soft decoding are studied: coded multiuser detection in the CDMA base station and improved RAKE-based reception employing soft detection in the mobile terminal. For coded multiuser detection, we propose a novel receiver structure that utilizes the decoding information for multiuser detection. We analyze the performance and derive lower bounds for the capacity of interference cancellation CDMA receivers when using channel coding to improve the reliability of tentative decisions. For soft decision and decoding techniques in the CDMA downlink, we propose a modified maximal ratio combining (MRC) scheme that is more suitable for RAKE receivers in WCDMA mobile terminals than the conventional MRC scheme. We also introduce an improved soft-output RAKE detector that is especially suitable for low spreading gains and high-order modulation schemes. Finally we analyze the gain obtained through the use of Brennan's MRC scheme and our modified MRC scheme. Throughout this thesis Bayesian networks are utilized to develop algorithms for soft detection and decoding problems. This approach originates from the initial stages of this research, where Bayesian networks and algorithms using such graphical models (e.g. the so-called sum-product algorithm) were used to identify new receiver algorithms. In the end, this viewpoint may not be easily noticeable in the final form of the algorithms, mainly because the practical efficiency considerations forced us to select simplified variants of the algorithms. However, this viewpoint is important to emphasize the underlying connection between the apparently different soft detection and decision algorithms described in this thesis.reviewe

    SMARAD - Centre of Excellence in Smart Radios and Wireless Research - Activity Report 2011 - 2013

    Get PDF
    Centre of Excellence in Smart Radios and Wireless Research (SMARAD), originally established with the name Smart and Novel Radios Research Unit, is aiming at world-class research and education in Future radio and antenna systems, Cognitive radio, Millimetre wave and THz techniques, Sensors, and Materials and energy, using its expertise in RF, microwave and millimeter wave engineering, in integrated circuit design for multi-standard radios as well as in wireless communications. SMARAD has the Centre of Excellence in Research status from the Academy of Finland since 2002 (2002-2007 and 2008-2013). Currently SMARAD consists of five research groups from three departments, namely the Department of Radio Science and Engineering, Department of Micro and Nanosciences, and Department of Signal Processing and Acoustics, all within the Aalto University School of Electrical Engineering. The total number of employees within the research unit is about 100 including 8 professors, about 30 senior scientists and about 40 graduate students and several undergraduate students working on their Master thesis. The relevance of SMARAD to the Finnish society is very high considering the high national income from exports of telecommunications and electronics products. The unit conducts basic research but at the same time maintains close co-operation with industry. Novel ideas are applied in design of new communication circuits and platforms, transmission techniques and antenna structures. SMARAD has a well-established network of co-operating partners in industry, research institutes and academia worldwide. It coordinates a few EU projects. The funding sources of SMARAD are diverse including the Academy of Finland, EU, ESA, Tekes, and Finnish and foreign telecommunications and semiconductor industry. As a by-product of this research SMARAD provides highest-level education and supervision to graduate students in the areas of radio engineering, circuit design and communications through Aalto University and Finnish graduate schools. During years 2011 – 2013, 18 doctor degrees were awarded to the students of SMARAD. In the same period, the SMARAD researchers published 197 refereed journal articles and 360 conference papers

    Sesión 495, Ordinaria Modalidad Virtual. Vigésimo Cuarto Consejo Académico, 12 de julio de 2022

    Get PDF
    1 archivo PDF (305 páginas) + 1 archivo zipLista de asistencia. -- Orden del Día. -- Acta de la Sesión 495 Ordinaria. -- Acuerdos de la Sesión 495 Ordinaria. -- Acta de la Sesión 494. -- Jurados Diploma a la Investigación 2021. -- Renuncias Comisiones Dictaminadoras Divisionales (Dr. Ernesto Rodrigo Vázquez Cerón, Mtro. Fabricio Vanden Broeck y Dr. León Tomás Ejea Mendoza). -- Dictamen creación de Área Mecánica -- Dictamen Premio a las Áreas 2022 -- Escrito DCSH.AZC.336.22 Dictamen C. Docencia Consejo Divisional CSH. -- Escrito suscrito por el Dr. Saúl Jerónimo Romero con fecha 11 de julio de 2022 y anexos. -- Escrito con fecha 12 de julio de 2022 firmado por un grupo del sector estudiantil relativo a la petición de un diálogo público con el Rector de la Unidad Azcapotzalco
    corecore