10 research outputs found

    Development of the Beam Position Monitors for the Diagnostics of the Test Beam Line in the CTF3 at CERN

    Get PDF
    The work for this thesis is in line with the field of Instrumentation for Particle Accelerators, so called Beam Diagnostics. It is presented the development of a series of electro-mechanical devices called Inductive Pick-Ups (IPU) for Beam Position Monitoring (BPM). A full set of 17 BPM units (16 + 1 spare), named BPS units, were built and installed into the Test Beam Line (TBL), an electron beam decelerator, of the 3rd CLIC Test Facility (CTF3) at CERN ¿European Organization for the Nuclear Research¿. The CTF3, built at CERN by an international collaboration, was meant to demonstrate the technical feasibility of the key concepts for CLIC ¿Compact Linear Collider¿ as a future linear collider based on the novel two-beam acceleration scheme, and in order to achieve the next energy frontier for a lepton collider in theMulti-TeV scale. Modern particle accelerators and in particular future colliders like CLIC requires an extreme alignment and stabilization of the beam in order to enhance its quality, which rely heavily on a beam based alignment techniques. Here the BPMs, like the BPS-IPU, play an important role providing the beam position with precision and high resolution, besides a beam current measurement in the case of the BPS, along the beam lines. The BPS project carried out at IFIC was mainly developed in two phases: prototyping and series production and test for the TBL. In the first project phase two fully functional BPS prototypes were constructed, focusing in this thesis work on the electronic design of the BPS on-board PCBs (Printed Circuit Boards) which are based on transformers for the current sensing and beam position measurement. Furthermore, it is described the monitor mechanical design with emphasis on all the parts directly involved in its electromagnetic functioning, as a result of the coupling of the EM fields generated by the beam with those parts. For that, it was studied its operational parameters, according the TBL specifications, and it was also simulated a new circuital model reproducing the BPS monitor frequency response for its operational bandwidth (1kHz-100MHz). These prototypes were initially tested in the laboratories of the BI-PI section¿Beam Instrumentation - Position and Intensity¿ at CERN. In the second project phase the BPS monitor series, which were built based on the experience acquired during the prototyping phase, the work was focused on the realization of the characterization tests to measure the main operational parameters of each series monitor, for which it was designed and constructed two test benches with different purposes and frequency regions. The first one is designed to work in the low frequency region, between 1kHz-100MHz, in the time scale of the electron beam pulse with a repetition period of 1s and an approximate duration of 140ns. This kind of test setups called Wire Test-bench are commonly used in the accelerators instrumentation field in order to determine the characteristic parameters of a BPM (or pick-up) like its linearity and precision in the position measurement, and also its frequency response (bandwidth). This is done by emulating a low current intensity beam with a stretched wire carrying a current signals which can be precisely positioned with respect the device under test. This test bench was specifically made for the BPS monitor and conceived to perform the measurement data acquisition in an automated way, managing the measurement equipment and the wire positioning motors controller from a PC workstation. Each one of the BPS monitors series were characterized by using this system at the IFIC labs, and the test results and analysis are presented in this work. On the other hand, the high frequency tests, above the X band in the microwave spectrum and at the time scale of the micro-bunch pulses with a bunching period of 83ps (12GHz) inside a long 140ns pulse, were performed in order to measure the longitudinal impedance of the BPS monitor. This must be low enough in order to minimize the perturbations on the beam produced at crossing the monitor, which affects to its stability during the propagation along the line. For that, it was built the high frequency test bench as a coaxial waveguide structure of 24mm diameter matched at 50¿ and with a bandwidth from 18MHz to 30GHz, which was previously simulated, and having room in the middle to place the BPS as the device under test. This high frequency test bench is able to reproduce the TEM (Transversal Electro-Magnetic) propagative modes corresponding to an ultra-relativistic electron beam of 12GHz bunching frequency, so that the Scattering parameters can be measured to obtain the longitudinal impedance of the BPS in the frequency range of interest. Finally, it is also presented the results of the beam test made in the TBL line, with beam currents from 3.5A to 13A (max. available at the moment of the test). In order to determine the minimum resolution attainable by a BPS monitor in the measurement of the beam position, being the device figure of merit, with a resolution goal of 5¿m at maximum beam current of 28A according to the TBL specifications.García Garrigós, JJ. (2013). Development of the Beam Position Monitors for the Diagnostics of the Test Beam Line in the CTF3 at CERN [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34327TESI

    Site-Directed Research and Development FY 2012 Annual Report

    Full text link

    Quantum simulation experiments with superconducting circuits

    Get PDF
    While the universal quantum computer seems not in reach for the near future, this work focusses on analog quantum simulation of intriguing quantum models of light-matter interactions, with the goal of achieving a computational speed-up as compared to classical hardware. Existing building blocks of quantum hardware are used from superconducting circuits, that have proven to be a very suitable experimental platform for the implementation of model Hamiltonians at a high degree of controllability

    X-Band LLRF Developments for High Power CLIC Test Stands and Waveguide Interferometry for Phase Stabilisation

    Get PDF
    This thesis describes the upgrade of the first high power X-band RF test for high gradient accelerating structures at CERN, as required for the e+ e- collider research program; Compact Linear Collider, CLIC. Significant improvements to the control system and operation of the first test stand, Xbox-1, are implemented. The design and commissioning of the new Low Level Radio Frequency, LLRF, system is described in detail. The upgrade also encompasses software, interlock systems, timing, safety and control. The new LLRF requires an up-convertor to convert an input signal at 187.4 MHz to 11.806 GHz. The most common method is a phase locked loop, PLL, an alternative method was envisioned which uses single side-band up-convertor. This necessitated the design and manufacture of a custom cavity filter. The up-convertor and PLL are compared and both are implemented in the new LLRF. The new LLRF system is implemented at Xbox1 and used to RF condition a 50 MW CPI klystron, the final output power was 45 MW for a 50 ns RF pulse length. The phase and amplitude of the LLRF, TWT and klystron are characterised with both the PLL and up-convertor. The klystron phase stability was studied using a sensitivity analysis. The waveguide network between the klystron and the accelerating structures is approximately 30 m. This network is subject to environmental phase changes which affect the phase stability of the RF arriving at the structures. A single path inteferometer was designed which will allow a phase measurement pulse at a secondary frequency to be injected into the waveguide network interleaved with klystron pulses. The interferometer is commissioned in the lab and low power measurements validate its operation. The system is then integrated into the high power network at Xbox1 and used to measure phase shifts in the waveguide network which are correlated with temperature

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Review of Particle Physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings

    Review of Particle Physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app

    Review of Particle Physics

    Get PDF
    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app.United States Department of Energy (DOE) DE-AC02-05CH11231government of Japan (Ministry of Education, Culture, Sports, Science and Technology)Istituto Nazionale di Fisica Nucleare (INFN)Physical Society of Japan (JPS)European Laboratory for Particle Physics (CERN)United States Department of Energy (DOE

    Infective/inflammatory disorders

    Get PDF

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text
    corecore