46 research outputs found

    The PACE 2017 Parameterized Algorithms and Computational Experiments Challenge: The Second Iteration

    Get PDF
    In this article, the Program Committee of the Second Parameterized Algorithms and Computational Experiments challenge (PACE 2017) reports on the second iteration of the PACE challenge. Track A featured the Treewidth problem and Track B the Minimum Fill-In problem. Over 44 participants on 17 teams from 11 countries submitted their implementations to the competition

    The PACE 2020 Parameterized Algorithms and Computational Experiments Challenge: Treedepth

    Get PDF

    The PACE 2022 Parameterized Algorithms and Computational Experiments Challenge: Directed Feedback Vertex Set

    Get PDF

    The PACE 2022 Parameterized Algorithms and Computational Experiments Challenge: Directed Feedback Vertex Set

    Get PDF
    The Parameterized Algorithms and Computational Experiments challenge (PACE) 2022 was devoted to engineer algorithms solving the NP-hard Directed Feedback Vertex Set (DFVS) problem. The DFVS problem is to find a minimum subset X⊆VX ⊆ V in a given directed graph G=(V,E)G = (V,E) such that, when all vertices of XX and their adjacent edges are deleted from GG, the remainder is acyclic. Overall, the challenge had 90 participants from 26 teams, 12 countries, and 3 continents that submitted their implementations to this year’s competition. In this report, we briefly describe the setup of the challenge, the selection of benchmark instances, as well as the ranking of the participating teams. We also briefly outline the approaches used in the submitted solvers

    Counting Problems in Parameterized Complexity

    Get PDF
    This survey is an invitation to parameterized counting problems for readers with a background in parameterized algorithms and complexity. After an introduction to the peculiarities of counting complexity, we survey the parameterized approach to counting problems, with a focus on two topics of recent interest: Counting small patterns in large graphs, and counting perfect matchings and Hamiltonian cycles in well-structured graphs. While this survey presupposes familiarity with parameterized algorithms and complexity, we aim at explaining all relevant notions from counting complexity in a self-contained way

    Detecting Feedback Vertex Sets of Size kk in O⋆(2.7k)O^\star(2.7^k) Time

    Full text link
    In the Feedback Vertex Set problem, one is given an undirected graph GG and an integer kk, and one needs to determine whether there exists a set of kk vertices that intersects all cycles of GG (a so-called feedback vertex set). Feedback Vertex Set is one of the most central problems in parameterized complexity: It served as an excellent test bed for many important algorithmic techniques in the field such as Iterative Compression~[Guo et al. (JCSS'06)], Randomized Branching~[Becker et al. (J. Artif. Intell. Res'00)] and Cut\&Count~[Cygan et al. (FOCS'11)]. In particular, there has been a long race for the smallest dependence f(k)f(k) in run times of the type O⋆(f(k))O^\star(f(k)), where the O⋆O^\star notation omits factors polynomial in nn. This race seemed to be run in 2011, when a randomized algorithm O⋆(3k)O^\star(3^k) time algorithm based on Cut\&Count was introduced. In this work, we show the contrary and give a O⋆(2.7k)O^\star(2.7^k) time randomized algorithm. Our algorithm combines all mentioned techniques with substantial new ideas: First, we show that, given a feedback vertex set of size kk of bounded average degree, a tree decomposition of width (1−Ω(1))k(1-\Omega(1))k can be found in polynomial time. Second, we give a randomized branching strategy inspired by the one from~[Becker et al. (J. Artif. Intell. Res'00)] to reduce to the aforementioned bounded average degree setting. Third, we obtain significant run time improvements by employing fast matrix multiplication.Comment: SODA 2020, 22 page

    Computing Treewidth on the GPU

    Get PDF
    We present a parallel algorithm for computing the treewidth of a graph on a GPU. We implement this algorithm in OpenCL, and experimentally evaluate its performance. Our algorithm is based on an O*(2^n)-time algorithm that explores the elimination orderings of the graph using a Held-Karp like dynamic programming approach. We use Bloom filters to detect duplicate solutions. GPU programming presents unique challenges and constraints, such as constraints on the use of memory and the need to limit branch divergence. We experiment with various optimizations to see if it is possible to work around these issues. We achieve a very large speed up (up to 77x) compared to running the same algorithm on the CPU

    Component Order Connectivity in Directed Graphs

    Get PDF

    Computing Hitting Set Kernels By AC^0-Circuits

    Get PDF
    Given a hypergraph H = (V,E), what is the smallest subset X of V such that e and X are not disjoint for all e in E? This problem, known as the hitting set problem, is a basic problem in parameterized complexity theory. There are well-known kernelization algorithms for it, which get a hypergraph H and a number k as input and output a hypergraph H\u27 such that (1) H has a hitting set of size k if, and only if, H\u27 has such a hitting set and (2) the size of H\u27 depends only on k and on the maximum cardinality d of edges in H. The algorithms run in polynomial time, but are highly sequential. Recently, it has been shown that one of them can be parallelized to a certain degree: one can compute hitting set kernels in parallel time O(d) - but it was conjectured that this is the best parallel algorithm possible. We refute this conjecture and show how hitting set kernels can be computed in constant parallel time. For our proof, we introduce a new, generalized notion of hypergraph sunflowers and show how iterated applications of the color coding technique can sometimes be collapsed into a single application

    Towards Exact Structural Thresholds for Parameterized Complexity

    Get PDF
    Parameterized complexity seeks to optimally use input structure to obtain faster algorithms for NP-hard problems. This has been most successful for graphs of low treewidth, i.e., graphs decomposable by small separators: Many problems admit fast algorithms relative to treewidth and many of them are optimal under the Strong Exponential-Time Hypothesis (SETH). Fewer such results are known for more general structure such as low clique-width (decomposition by large and dense but structured separators) and more restrictive structure such as low deletion distance to some sparse graph class. Despite these successes, such results remain "islands" within the realm of possible structure. Rather than adding more islands, we seek to determine the transitions between them, that is, we aim for structural thresholds where the complexity increases as input structure becomes more general. Going from deletion distance to treewidth, is a single deletion set to a graph with simple components enough to yield the same lower bound as for treewidth or does it take many disjoint separators? Going from treewidth to clique-width, how much more density entails the same complexity as clique-width? Conversely, what is the most restrictive structure that yields the same lower bound? For treewidth, we obtain both refined and new lower bounds that apply already to graphs with a single separator X such that G-X has treewidth at most r = ?(1), while G has treewidth |X|+?(1). We rule out algorithms running in time ?^*((r+1-?)^k) for Deletion to r-Colorable parameterized by k = |X|; this implies the same lower bound relative to treedepth and (hence) also to treewidth. It specializes to ?^*((3-?)^k) for Odd Cycle Transversal where tw(G-X) ? r = 2 is best possible. For clique-width, an extended version of the above reduction rules out time ?^*((4-?)^k), where X is allowed to be a possibly large separator consisting of k (true) twinclasses, while the treewidth of G - X remains r; this is proved also for the more general Deletion to r-Colorable and it implies the same lower bound relative to clique-width. Further results complement what is known for Vertex Cover, Dominating Set and Maximum Cut. All lower bounds are matched by existing and newly designed algorithms
    corecore