54 research outputs found

    Design methodology and productivity improvement in high speed VLSI circuits

    Get PDF
    2017 Spring.Includes bibliographical references.To view the abstract, please see the full text of the document

    Doctor of Philosophy

    Get PDF
    dissertationOver the last decade, cyber-physical systems (CPSs) have seen significant applications in many safety-critical areas, such as autonomous automotive systems, automatic pilot avionics, wireless sensor networks, etc. A Cps uses networked embedded computers to monitor and control physical processes. The motivating example for this dissertation is the use of fault- tolerant routing protocol for a Network-on-Chip (NoC) architecture that connects electronic control units (Ecus) to regulate sensors and actuators in a vehicle. With a network allowing Ecus to communicate with each other, it is possible for them to share processing power to improve performance. In addition, networked Ecus enable flexible mapping to physical processes (e.g., sensors, actuators), which increases resilience to Ecu failures by reassigning physical processes to spare Ecus. For the on-chip routing protocol, the ability to tolerate network faults is important for hardware reconfiguration to maintain the normal operation of a system. Adding a fault-tolerance feature in a routing protocol, however, increases its design complexity, making it prone to many functional problems. Formal verification techniques are therefore needed to verify its correctness. This dissertation proposes a link-fault-tolerant, multiflit wormhole routing algorithm, and its formal modeling and verification using two different methodologies. An improvement upon the previously published fault-tolerant routing algorithm, a link-fault routing algorithm is proposed to relax the unrealistic node-fault assumptions of these algorithms, while avoiding deadlock conservatively by appropriately dropping network packets. This routing algorithm, together with its routing architecture, is then modeled in a process-algebra language LNT, and compositional verification techniques are used to verify its key functional properties. As a comparison, it is modeled using channel-level VHDL which is compiled to labeled Petri-nets (LPNs). Algorithms for a partial order reduction method on LPNs are given. An optimal result is obtained from heuristics that trace back on LPNs to find causally related enabled predecessor transitions. Key observations are made from the comparison between these two verification methodologies

    Hazard-free clock synchronization

    Get PDF
    The growing complexity of microprocessors makes it infeasible to distribute a single clock source over the whole processor with a small clock skew. Hence, chips are split into multiple clock regions, each covered by a single clock source. This poses a problem for communication between these clock regions. Clock synchronization algorithms promise an advantage over state-of-the-art solutions, such as GALS systems. When clock regions are synchronous the communication latency improves significantly over handshake-based solutions. We focus on the implementation of clock synchronization algorithms. A major obstacle when implementing circuits on clock domain crossings are hazardous signals. We can formally define hazards by extending the Boolean logic by a third value u. In this thesis, we describe a theory for designing and analyzing hazard-free circuits. We develop strategies for hazard-free encoding and construction of hazard-free circuits from finite state machines. Furthermore, we discuss clock synchronization algorithms and a possible combination of them. In the end, we present two implementations of the GCS algorithm by Lenzen, Locher, and Wattenhofer (JACM 2010). We prove by rigorous analysis that the systems implement the algorithm. The theory described above is used to prove that our clock synchronization circuits are hazard-free (in the sense that they compute the most precise output possible). Simulation of our GCS system shows that it achieves a skew between neighboring clock regions that is smaller than a few inverter delays.Aufgrund der zunehmenden Komplexität von Mikroprozessoren ist es unmöglich, mit einer einzigen Taktquelle den gesamten Prozessor ohne großen Versatz zu takten. Daher werden Chips in mehrere Regionen aufgeteilt, die jeweils von einer einzelnen Taktquelle abgedeckt werden. Dies stellt ein Problem für die Kommunikation zwischen diesen Taktregionen dar. Algorithmen zur Taktsynchronisation bieten einen Vorteil gegenüber aktuellen Lösungen, wie z.B. GALS-Systemen. Synchronisiert man die Taktregionen, so verbessert sich die Latenz der Kommunikation erheblich. In Schaltkreisen zwischen zwei Taktregionen können undefinierte Signale, sogenannte Hazards auftreten. Indem wir die boolesche Algebra um einen dritten Wert u erweitern, können wir diese Hazards formal definieren. In dieser Arbeit zeigen wir eine Methode zum Entwurf und zur Analyse von hazard-freien Schaltungen. Wir entwickeln Strategien für Kodierungen die Hazards vermeiden und zur Konstruktion von hazard-freien Schaltungen. Darüber hinaus stellen wir Algorithmen Taktsynchronisation vor und wie diese kombiniert werden können. Zum Schluss stellen wir zwei Implementierungen des GCS-Algorithmus von Lenzen, Locher und Wattenhofer (JACM 2010) vor. Oben genannte Mechanismen werden verwendet, um formal zu beweisen, dass diese Implementierungen korrekt sind. Die Implementierung hat keine Hazards, das heißt sie berechnet die bestmo ̈gliche Ausgabe. Anschließende Simulation der GCS Implementierung erzielt einen Versatz zwischen benachbarten Taktregionen, der kleiner als ein paar Gatter-Laufzeiten ist

    Stochastic-Based Computing with Emerging Spin-Based Device Technologies

    Get PDF
    In this dissertation, analog and emerging device physics is explored to provide a technology platform to design new bio-inspired system and novel architecture. With CMOS approaching the nano-scaling, their physics limits in feature size. Therefore, their physical device characteristics will pose severe challenges to constructing robust digital circuitry. Unlike transistor defects due to fabrication imperfection, quantum-related switching uncertainties will seriously increase their susceptibility to noise, thus rendering the traditional thinking and logic design techniques inadequate. Therefore, the trend of current research objectives is to create a non-Boolean high-level computational model and map it directly to the unique operational properties of new, power efficient, nanoscale devices. The focus of this research is based on two-fold: 1) Investigation of the physical hysteresis switching behaviors of domain wall device. We analyze phenomenon of domain wall device and identify hysteresis behavior with current range. We proposed the Domain-Wall-Motion-based (DWM) NCL circuit that achieves approximately 30x and 8x improvements in energy efficiency and chip layout area, respectively, over its equivalent CMOS design, while maintaining similar delay performance for a one bit full adder. 2) Investigation of the physical stochastic switching behaviors of Mag- netic Tunnel Junction (MTJ) device. With analyzing of stochastic switching behaviors of MTJ, we proposed an innovative stochastic-based architecture for implementing artificial neural network (S-ANN) with both magnetic tunneling junction (MTJ) and domain wall motion (DWM) devices, which enables efficient computing at an ultra-low voltage. For a well-known pattern recognition task, our mixed-model HSPICE simulation results have shown that a 34-neuron S-ANN implementation, when compared with its deterministic-based ANN counterparts implemented with digital and analog CMOS circuits, achieves more than 1.5 ~ 2 orders of magnitude lower energy consumption and 2 ~ 2.5 orders of magnitude less hidden layer chip area

    Interim research assessment 2003-2005 - Computer Science

    Get PDF
    This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche
    corecore