244 research outputs found

    Variable Speed Limits. Review and development of an aggregate indicator based on floating car data.

    Full text link
    Changing factors (mainly traffic intensity and weather conditions) affecting road conditions require a suitable optimal speed at any time. To solve this problem, variable speed limit systems (VSL) ? as opposed to fixed limits ? have been developed in recent decades. This term has included a number of speed management systems, most notably dynamic speed limits (DSL). In order to avoid the indiscriminate use of both terms in the literature, this paper proposes a simple classification and offers a review of some experiences, how their effects are evaluated and their results This study also presents a key indicator, which measures the speed homogeneity and a methodology to obtain the data based on floating cars and GPS technology applying it to a case study on a section of the M30 urban motorway in Madrid (Spain)

    Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems

    Get PDF
    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NOx). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment

    Homogeneization effects of variable speed limits.

    Full text link
    Changing factors (mainly traffic intensity and weather conditions) affecting road conditions require a suitable optimal speed at any time. To solve this problem, variable speed limit systems (VSL) - as opposed to fixed limits - have been developed in recent decades. This term has included a number of speed management systems, most notably dynamic speed limits (DSL). In order to avoid the indiscriminate use of both terms in the literature, this paper proposes a simple classification and offers a review of some experiences, how their effects are evaluated and their results. This study also presents a key indicator which measures the speed homogeneity and a methodology to obtain the data based on floating cars and GPS technology applying it to a case study on a section of the M30 urban motorway in Madrid (Spain). It also presents the relation between this indicator and road performance and emissions values

    Pedestrian behavior prediction based on motion patterns for vehicle-to-pedestrian collision avoidance

    Get PDF
    This paper proposes a prediction method for vehicle-to-pedestrian collision avoidance, which learns and then predicts pedestrian behaviors as their motion instances are being observed. During learning, known trajectories are clustered to form Motion Patterns (MP), which become knowledge a priori to a multi-level prediction model that predicts long-term or short-term pedestrian behaviors. Simulation results show that it works well in a complex structured environment and the prediction is consistent with actual behaviors. © 2008 IEEE.published_or_final_versio

    Driver lane change intention inference for intelligent vehicles: framework, survey, and challenges

    Get PDF
    Intelligent vehicles and advanced driver assistance systems (ADAS) need to have proper awareness of the traffic context as well as the driver status since ADAS share the vehicle control authorities with the human driver. This study provides an overview of the ego-vehicle driver intention inference (DII), which mainly focus on the lane change intention on highways. First, a human intention mechanism is discussed in the beginning to gain an overall understanding of the driver intention. Next, the ego-vehicle driver intention is classified into different categories based on various criteria. A complete DII system can be separated into different modules, which consists of traffic context awareness, driver states monitoring, and the vehicle dynamic measurement module. The relationship between these modules and the corresponding impacts on the DII are analyzed. Then, the lane change intention inference (LCII) system is reviewed from the perspective of input signals, algorithms, and evaluation. Finally, future concerns and emerging trends in this area are highlighted

    Detection and Recognition of Traffic Sign using FCM with SVM

    Get PDF
    This paper mainly focuses on Traffic Sign and board Detection systems that have been placed on roads and highway. This system aims to deal with real-time traffic sign and traffic board recognition, i.e. localizing what type of traffic sign and traffic board are appears in which area of an input image at a fast processing time. Our detection module is based on proposed extraction and classification of traffic signs built upon a color probability model using HAAR feature Extraction and color Histogram of Orientated Gradients (HOG).HOG technique is used to convert original image into gray color then applies RGB for foreground. Then the Support Vector Machine (SVM) fetches the object from the above result and compares with database. At the same time Fuzzy Cmeans cluster (FCM) technique get the same output from above result and then  to compare with the database images. By using this method, accuracy of identifying the signs could be improved. Also the dynamic updating of new signals can be done. The goal of this work is to provide optimized prediction on the given sign

    IFAC bilten

    Get PDF

    Pedestrian and cyclist detection and intent estimation for autonomous vehicles: A survey

    Get PDF
    © 2019 by the authors. As autonomous vehicles become more common on the roads, their advancement draws on safety concerns for vulnerable road users, such as pedestrians and cyclists. This paper presents a review of recent developments in pedestrian and cyclist detection and intent estimation to increase the safety of autonomous vehicles, for both the driver and other road users. Understanding the intentions of the pedestrian/cyclist enables the self-driving vehicle to take actions to avoid incidents. To make this possible, development of methods/techniques, such as deep learning (DL), for the autonomous vehicle will be explored. For example, the development of pedestrian detection has been significantly advanced using DL approaches, such as; Fast Region-Convolutional Neural Network (R-CNN), Faster R-CNN and Single Shot Detector (SSD). Although DL has been around for several decades, the hardware to realise the techniques have only recently become viable. Using these DL methods for pedestrian and cyclist detection and applying it for the tracking, motion modelling and pose estimation can allow for a successful and accurate method of intent estimation for the vulnerable road users. Although there has been a growth in research surrounding the study of pedestrian detection using vision-based approaches, further attention should include focus on cyclist detection. To further improve safety for these vulnerable road users (VRUs), approaches such as sensor fusion and intent estimation should be investigated
    corecore