155 research outputs found

    Acceleration of Statistical Detection of Zero-day Malware in the Memory Dump Using CUDA-enabled GPU Hardware

    Get PDF
    This paper focuses on the anticipatory enhancement of methods of detecting stealth software. Cyber security detection tools are insufficiently powerful to reveal the most recent cyber-attacks which use malware. In this paper, we will present first an idea of the highest stealth malware, as this is the most complicated scenario for detection because it combines both existing anti-forensic techniques together with their potential improvements. Second, we present new detection methods, which are resilient to this hidden prototype. To help solve this detection challenge, we have analyzed Windows memory content using a new method of Shannon Entropy calculation; methods of digital photogrammetry; the Zipf Mandelbrot law, as well as by disassembling the memory content and analyzing the output. Finally, we present an idea and architecture of the software tool, which uses CUDA enabled GPU hardware to speed-up memory forensics. All three ideas are currently a work in progress

    Optical boundaries for LED-based indoor positioning system

    Get PDF
    Overlap of footprints of light emitting diodes (LEDs) increases the positioning accuracy of wearable LED indoor positioning systems (IPS) but such an approach assumes that the footprint boundaries are defined. In this work, we develop a mathematical model for defining the footprint boundaries of an LED in terms of a threshold angle instead of the conventional half or full angle. To show the effect of the threshold angle, we compare how overlaps and receiver tilts affect the performance of an LED-based IPS when the optical boundary is defined at the threshold angle and at the full angle. Using experimental measurements, simulations, and theoretical analysis, the effect of the defined threshold angle is estimated. The results show that the positional time when using the newly defined threshold angle is 12 times shorter than the time when the full angle is used. When the effect of tilt is considered, the threshold angle time is 22 times shorter than the full angle positioning time. Regarding accuracy, it is shown in this work that a positioning error as low as 230 mm can be obtained. Consequently, while the IPS gives a very low positioning error, a defined threshold angle reduces delays in an overlap-based LED IPS

    Routing Protocols Evaluation Review in Simple and Cloud Environment

    Get PDF
    In the field of information technology there are many computer jargons like cloud computing Ad-hoc, Software Define Network (SDN), network function virtualization (NFV) , and virtual machine (VM), etc. This review paper is basically a blend of brief study and review of many routing protocols used for Mobile ad hoc Networks (MANET) in the cloud as well as in simple network environment i.e. without cloud computing. This paper would also suggest the different challenges that are facing in cloud computing. The description of the different network simulators used in networking like NS2 tool, Opnet and Cisco packet tracer. The different metrics that are used in the networking are briefly explained. MANET is a group of wireless nodes that do not need centralized controlling entity as it rapidly moveschanges and forms networks to the nearest networking nodes

    Internet of Things Architectures, Technologies, Applications, Challenges, and Future Directions for Enhanced Living Environments and Healthcare Systems: A Review

    Get PDF
    Internet of Things (IoT) is an evolution of the Internet and has been gaining increased attention from researchers in both academic and industrial environments. Successive technological enhancements make the development of intelligent systems with a high capacity for communication and data collection possible, providing several opportunities for numerous IoT applications, particularly healthcare systems. Despite all the advantages, there are still several open issues that represent the main challenges for IoT, e.g., accessibility, portability, interoperability, information security, and privacy. IoT provides important characteristics to healthcare systems, such as availability, mobility, and scalability, that o er an architectural basis for numerous high technological healthcare applications, such as real-time patient monitoring, environmental and indoor quality monitoring, and ubiquitous and pervasive information access that benefits health professionals and patients. The constant scientific innovations make it possible to develop IoT devices through countless services for sensing, data fusing, and logging capabilities that lead to several advancements for enhanced living environments (ELEs). This paper reviews the current state of the art on IoT architectures for ELEs and healthcare systems, with a focus on the technologies, applications, challenges, opportunities, open-source platforms, and operating systems. Furthermore, this document synthesizes the existing body of knowledge and identifies common threads and gaps that open up new significant and challenging future research directions.info:eu-repo/semantics/publishedVersio

    Acceleration of Statistical Detection of Zero-day Malware in the Memory Dump Using CUDA-enabled GPU Hardware

    Get PDF
    This paper focuses on the anticipatory enhancement of methods of detecting stealth software. Cyber security detection tools are insufficiently powerful to reveal the most recent cyber-attacks which use malware. In this paper, we will present first an idea of the highest stealth malware, as this is the most complicated scenario for detection because it combines both existing anti-forensic techniques together with their potential improvements. Second, we will present new detection methods which are resilient to this hidden prototype. To help solve this detection challenge, we have analyzed Windows’ memory content using a new method of Shannon Entropy calculation; methods of digital photogrammetry; the Zipf–Mandelbrot law, as well as by disassembling the memory content and analyzing the output. Finally, we present an idea and architecture of the software tool, which uses CUDA-enabled GPU hardware, to speed-up memory forensics. All three ideas are currently a work in progress. Keywords: rootkit detection, anti-forensics, memory analysis, scattered fragments, anticipatory enhancement, CUDA

    Fog Computing in IoT Smart Environments via Named Data Networking: A Study on Service Orchestration Mechanisms

    Get PDF
    [EN] By offering low-latency and context-aware services, fog computing will have a peculiar role in the deployment of Internet of Things (IoT) applications for smart environments. Unlike the conventional remote cloud, for which consolidated architectures and deployment options exist, many design and implementation aspects remain open when considering the latest fog computing paradigm. In this paper, we focus on the problems of dynamically discovering the processing and storage resources distributed among fog nodes and, accordingly, orchestrating them for the provisioning of IoT services for smart environments. In particular, we show how these functionalities can be effectively supported by the revolutionary Named Data Networking (NDN) paradigm. Originally conceived to support named content delivery, NDN can be extended to request and provide named computation services, with NDN nodes acting as both content routers and in-network service executors. To substantiate our analysis, we present an NDN fog computing framework with focus on a smart campus scenario, where the execution of IoT services is dynamically orchestrated and performed by NDN nodes in a distributed fashion. A simulation campaign in ndnSIM, the reference network simulator of the NDN research community, is also presented to assess the performance of our proposal against state-of-the-art solutions. Results confirm the superiority of the proposal in terms of service provisioning time, paid at the expenses of a slightly higher amount of traffic exchanged among fog nodes.This research was partially funded by the Italian Government under grant PON ARS01_00836 for the COGITO (A COGnItive dynamic sysTem to allOw buildings to learn and adapt) PON Project.Amadeo, M.; Ruggeri, G.; Campolo, C.; Molinaro, A.; Loscri, V.; Tavares De Araujo Cesariny Calafate, CM. (2019). Fog Computing in IoT Smart Environments via Named Data Networking: A Study on Service Orchestration Mechanisms. Future Internet. 11(11):1-21. https://doi.org/10.3390/fi11110222S1211111Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431-440. doi:10.1016/j.bushor.2015.03.008Cicirelli, F., Guerrieri, A., Spezzano, G., Vinci, A., Briante, O., Iera, A., & Ruggeri, G. (2018). Edge Computing and Social Internet of Things for Large-Scale Smart Environments Development. IEEE Internet of Things Journal, 5(4), 2557-2571. doi:10.1109/jiot.2017.2775739Chiang, M., & Zhang, T. (2016). Fog and IoT: An Overview of Research Opportunities. IEEE Internet of Things Journal, 3(6), 854-864. doi:10.1109/jiot.2016.2584538Openfog Consortiumhttp://www.openfogconsortium.org/Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., claffy, kc, Crowley, P., … Zhang, B. (2014). Named data networking. ACM SIGCOMM Computer Communication Review, 44(3), 66-73. doi:10.1145/2656877.2656887Amadeo, M., Ruggeri, G., Campolo, C., & Molinaro, A. (2019). IoT Services Allocation at the Edge via Named Data Networking: From Optimal Bounds to Practical Design. IEEE Transactions on Network and Service Management, 16(2), 661-674. doi:10.1109/tnsm.2019.2900274ndnSIM 2.0: A New Version of the NDN Simulator for NS-3https://www.researchgate.net/profile/Spyridon_Mastorakis/publication/281652451_ndnSIM_20_A_new_version_of_the_NDN_simulator_for_NS-3/links/5b196020a6fdcca67b63660d/ndnSIM-20-A-new-version-of-the-NDN-simulator-for-NS-3.pdfAhlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., & Ohlman, B. (2012). A survey of information-centric networking. IEEE Communications Magazine, 50(7), 26-36. doi:10.1109/mcom.2012.6231276NFD Developer’s Guidehttps://named-data.net/wp-content/uploads/2016/03/ndn-0021-diff-5..6-nfd-developer-guide.pdfPiro, G., Amadeo, M., Boggia, G., Campolo, C., Grieco, L. A., Molinaro, A., & Ruggeri, G. (2019). Gazing into the Crystal Ball: When the Future Internet Meets the Mobile Clouds. IEEE Transactions on Cloud Computing, 7(1), 210-223. doi:10.1109/tcc.2016.2573307Zhang, G., Li, Y., & Lin, T. (2013). Caching in information centric networking: A survey. Computer Networks, 57(16), 3128-3141. doi:10.1016/j.comnet.2013.07.007Yi, C., Afanasyev, A., Moiseenko, I., Wang, L., Zhang, B., & Zhang, L. (2013). A case for stateful forwarding plane. Computer Communications, 36(7), 779-791. doi:10.1016/j.comcom.2013.01.005Amadeo, M., Briante, O., Campolo, C., Molinaro, A., & Ruggeri, G. (2016). Information-centric networking for M2M communications: Design and deployment. Computer Communications, 89-90, 105-116. doi:10.1016/j.comcom.2016.03.009Tourani, R., Misra, S., Mick, T., & Panwar, G. (2018). Security, Privacy, and Access Control in Information-Centric Networking: A Survey. IEEE Communications Surveys & Tutorials, 20(1), 566-600. doi:10.1109/comst.2017.2749508Ndn-ace: Access Control for Constrained Environments over Named Data Networkinghttp://new.named-data.net/wp-content/uploads/2015/12/ndn-0036-1-ndn-ace.pdfZhang, Z., Yu, Y., Zhang, H., Newberry, E., Mastorakis, S., Li, Y., … Zhang, L. (2018). An Overview of Security Support in Named Data Networking. IEEE Communications Magazine, 56(11), 62-68. doi:10.1109/mcom.2018.1701147Cisco White Paperhttps://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdfAazam, M., Zeadally, S., & Harras, K. A. (2018). Deploying Fog Computing in Industrial Internet of Things and Industry 4.0. IEEE Transactions on Industrial Informatics, 14(10), 4674-4682. doi:10.1109/tii.2018.2855198Hou, X., Li, Y., Chen, M., Wu, D., Jin, D., & Chen, S. (2016). Vehicular Fog Computing: A Viewpoint of Vehicles as the Infrastructures. IEEE Transactions on Vehicular Technology, 65(6), 3860-3873. doi:10.1109/tvt.2016.2532863Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., … Jue, J. P. (2019). All one needs to know about fog computing and related edge computing paradigms: A complete survey. Journal of Systems Architecture, 98, 289-330. doi:10.1016/j.sysarc.2019.02.009Baktir, A. C., Ozgovde, A., & Ersoy, C. (2017). How Can Edge Computing Benefit From Software-Defined Networking: A Survey, Use Cases, and Future Directions. IEEE Communications Surveys & Tutorials, 19(4), 2359-2391. doi:10.1109/comst.2017.2717482Duan, Q., Yan, Y., & Vasilakos, A. V. (2012). A Survey on Service-Oriented Network Virtualization Toward Convergence of Networking and Cloud Computing. IEEE Transactions on Network and Service Management, 9(4), 373-392. doi:10.1109/tnsm.2012.113012.120310Amadeo, M., Campolo, C., & Molinaro, A. (2016). NDNe: Enhancing Named Data Networking to Support Cloudification at the Edge. IEEE Communications Letters, 20(11), 2264-2267. doi:10.1109/lcomm.2016.2597850Krol, M., Marxer, C., Grewe, D., Psaras, I., & Tschudin, C. (2018). Open Security Issues for Edge Named Function Environments. IEEE Communications Magazine, 56(11), 69-75. doi:10.1109/mcom.2018.170111711801-2:2017 Information Technology—Generic Cabling for Customer Premiseshttps://www.iso.org/standard/66183.htm

    Advances in Vehicular Ad-hoc Networks (VANETs): challenges and road-map for future development

    Get PDF
    Recent advances in wireless communication technologies and auto-mobile industry have triggered a significant research interest in the field of vehicular ad-hoc networks (VANETs) over the past few years. A vehicular network consists of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications supported by wireless access technologies such as IEEE 802.11p. This innovation in wireless communication has been envisaged to improve road safety and motor traffic efficiency in near future through the development of intelligent transportation system (ITS). Hence, governments, auto-mobile industries and academia are heavily partnering through several ongoing research projects to establish standards for VANETs. The typical set of VANET application areas, such as vehicle collision warning and traffic information dissemination have made VANET an interesting field of mobile wireless communication. This paper provides an overview on current research state, challenges, potentials of VANETs as well as the ways forward to achieving the long awaited ITS

    a dynamic traffic light management system based on wireless sensor networks for the reduction of the red light running phenomenon

    Get PDF
    Abstract The real-time knowledge of information concerning traffic light junctions represents a valid solution to congestion problems with the main aim to reduce, as much as possible, accidents. The Red Light Running (RLR) is a behavioural phenomenon that occurs when the driver must to choose to cross (or not) the road when the traffic light changes from green to yellow. Most of the time the drivers cross even during transitions from yellow to red and, as a consequence, the possibility of accidents increases. This often occurs because the drivers wait too much in the traffic light queue as a consequence of the fact that the traffic light is not well balanced. In this paper we propose a technique that, based on information gathered through a wireless sensor network, dynamically processes green times in a traffic light of an isolated intersection. The main aim is to optimise the waiting time in the queue and, as a consequence, reduce the RLR phenomenon occurrence

    The survey on Near Field Communication

    Get PDF
    PubMed ID: 26057043Near Field Communication (NFC) is an emerging short-range wireless communication technology that offers great and varied promise in services such as payment, ticketing, gaming, crowd sourcing, voting, navigation, and many others. NFC technology enables the integration of services from a wide range of applications into one single smartphone. NFC technology has emerged recently, and consequently not much academic data are available yet, although the number of academic research studies carried out in the past two years has already surpassed the total number of the prior works combined. This paper presents the concept of NFC technology in a holistic approach from different perspectives, including hardware improvement and optimization, communication essentials and standards, applications, secure elements, privacy and security, usability analysis, and ecosystem and business issues. Further research opportunities in terms of the academic and business points of view are also explored and discussed at the end of each section. This comprehensive survey will be a valuable guide for researchers and academicians, as well as for business in the NFC technology and ecosystem.Publisher's Versio

    The Extent and Coverage of Current Knowledge of Connected Health: Systematic Mapping Study

    Get PDF
    Background: This paper examines the development of the Connected Health research landscape with a view on providing a historical perspective on existing Connected Health research. Connected Health has become a rapidly growing research field as our healthcare system is facing pressured to become more proactive and patient centred. Objective: We aimed to identify the extent and coverage of the current body of knowledge in Connected Health. With this, we want to identify which topics have drawn the attention of Connected health researchers, and if there are gaps or interdisciplinary opportunities for further research. Methods: We used a systematic mapping study that combines scientific contributions from research on medicine, business, computer science and engineering. We analyse the papers with seven classification criteria, publication source, publication year, research types, empirical types, contribution types research topic and the condition studied in the paper. Results: Altogether, our search resulted in 208 papers which were analysed by a multidisciplinary group of researchers. Our results indicate a slow start for Connected Health research but a more recent steady upswing since 2013. The majority of papers proposed healthcare solutions (37%) or evaluated Connected Health approaches (23%). Case studies (28%) and experiments (26%) were the most popular forms of scientific validation employed. Diabetes, cancer, multiple sclerosis, and heart conditions are among the most prevalent conditions studied. Conclusions: We conclude that Connected Health research seems to be an established field of research, which has been growing strongly during the last five years. There seems to be more focus on technology driven research with a strong contribution from medicine, but business aspects of Connected health are not as much studied
    corecore