27 research outputs found

    A Survey and Evaluation of Android-Based Malware Evasion Techniques and Detection Frameworks

    Get PDF
    Android platform security is an active area of research where malware detection techniques continuously evolve to identify novel malware and improve the timely and accurate detection of existing malware. Adversaries are constantly in charge of employing innovative techniques to avoid or prolong malware detection effectively. Past studies have shown that malware detection systems are susceptible to evasion attacks where adversaries can successfully bypass the existing security defenses and deliver the malware to the target system without being detected. The evolution of escape-resistant systems is an open research problem. This paper presents a detailed taxonomy and evaluation of Android-based malware evasion techniques deployed to circumvent malware detection. The study characterizes such evasion techniques into two broad categories, polymorphism and metamorphism, and analyses techniques used for stealth malware detection based on the malware’s unique characteristics. Furthermore, the article also presents a qualitative and systematic comparison of evasion detection frameworks and their detection methodologies for Android-based malware. Finally, the survey discusses open-ended questions and potential future directions for continued research in mobile malware detection

    CryptoKnight:generating and modelling compiled cryptographic primitives

    Get PDF
    Cryptovirological augmentations present an immediate, incomparable threat. Over the last decade, the substantial proliferation of crypto-ransomware has had widespread consequences for consumers and organisations alike. Established preventive measures perform well, however, the problem has not ceased. Reverse engineering potentially malicious software is a cumbersome task due to platform eccentricities and obfuscated transmutation mechanisms, hence requiring smarter, more efficient detection strategies. The following manuscript presents a novel approach for the classification of cryptographic primitives in compiled binary executables using deep learning. The model blueprint, a Dynamic Convolutional Neural Network (DCNN), is fittingly configured to learn from variable-length control flow diagnostics output from a dynamic trace. To rival the size and variability of equivalent datasets, and to adequately train our model without risking adverse exposure, a methodology for the procedural generation of synthetic cryptographic binaries is defined, using core primitives from OpenSSL with multivariate obfuscation, to draw a vastly scalable distribution. The library, CryptoKnight, rendered an algorithmic pool of AES, RC4, Blowfish, MD5 and RSA to synthesise combinable variants which automatically fed into its core model. Converging at 96% accuracy, CryptoKnight was successfully able to classify the sample pool with minimal loss and correctly identified the algorithm in a real-world crypto-ransomware applicatio

    Understanding Android Obfuscation Techniques: A Large-Scale Investigation in the Wild

    Get PDF
    In this paper, we seek to better understand Android obfuscation and depict a holistic view of the usage of obfuscation through a large-scale investigation in the wild. In particular, we focus on four popular obfuscation approaches: identifier renaming, string encryption, Java reflection, and packing. To obtain the meaningful statistical results, we designed efficient and lightweight detection models for each obfuscation technique and applied them to our massive APK datasets (collected from Google Play, multiple third-party markets, and malware databases). We have learned several interesting facts from the result. For example, malware authors use string encryption more frequently, and more apps on third-party markets than Google Play are packed. We are also interested in the explanation of each finding. Therefore we carry out in-depth code analysis on some Android apps after sampling. We believe our study will help developers select the most suitable obfuscation approach, and in the meantime help researchers improve code analysis systems in the right direction

    Explainable Malware Detection System Using Transformers-Based Transfer Learning and Multi-Model Visual Representation

    Get PDF
    Android has become the leading mobile ecosystem because of its accessibility and adaptability. It has also become the primary target of widespread malicious apps. This situation needs the immediate implementation of an effective malware detection system. In this study, an explainable malware detection system was proposed using transfer learning and malware visual features. For effective malware detection, our technique leverages both textual and visual features. First, a pre-trained model called the Bidirectional Encoder Representations from Transformers (BERT) model was designed to extract the trained textual features. Second, the malware-to-image conversion algorithm was proposed to transform the network byte streams into a visual representation. In addition, the FAST (Features from Accelerated Segment Test) extractor and BRIEF (Binary Robust Independent Elementary Features) descriptor were used to efficiently extract and mark important features. Third, the trained and texture features were combined and balanced using the Synthetic Minority Over-Sampling (SMOTE) method; then, the CNN network was used to mine the deep features. The balanced features were then input into the ensemble model for efficient malware classification and detection. The proposed method was analyzed extensively using two public datasets, CICMalDroid 2020 and CIC-InvesAndMal2019. To explain and validate the proposed methodology, an interpretable artificial intelligence (AI) experiment was conducted

    High Accuracy Android Malware Detection Using Ensemble Learning

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.With over 50 billion downloads and more than 1.3 million apps in Google's official market, Android has continued to gain popularity among smartphone users worldwide. At the same time there has been a rise in malware targeting the platform, with more recent strains employing highly sophisticated detection avoidance techniques. As traditional signature-based methods become less potent in detecting unknown malware, alternatives are needed for timely zero-day discovery. Thus, this study proposes an approach that utilises ensemble learning for Android malware detection. It combines advantages of static analysis with the efficiency and performance of ensemble machine learning to improve Android malware detection accuracy. The machine learning models are built using a large repository of malware samples and benign apps from a leading antivirus vendor. Experimental results and analysis presented shows that the proposed method which uses a large feature space to leverage the power of ensemble learning is capable of 97.3–99% detection accuracy with very low false positive rates

    Cyber-threat detection system using a hybrid approach of transfer learning and multi-model image representation

    Get PDF
    Currently, Android apps are easily targeted by malicious network traffic because of their constant network access. These threats have the potential to steal vital information and disrupt the commerce, social system, and banking markets. In this paper, we present a malware detection system based on word2vec-based transfer learning and multi-model image representation. The proposed method combines the textual and texture features of network traffic to leverage the advantages of both types. Initially, the transfer learning method is used to extract trained vocab from network traffic. Then, the malware-to-image algorithm visualizes network bytes for visual analysis of data traffic. Next, the texture features are extracted from malware images using a combination of scale-invariant feature transforms (SIFTs) and oriented fast and rotated brief transforms (ORBs). Moreover, a convolutional neural network (CNN) is designed to extract deep features from a set of trained vocab and texture features. Finally, an ensemble model is designed to classify and detect malware based on the combination of textual and texture features. The proposed method is tested using two standard datasets, CIC-AAGM2017 and CICMalDroid 2020, which comprise a total of 10.2K malware and 3.2K benign samples. Furthermore, an explainable AI experiment is performed to interpret the proposed approach

    Machine Learning for Detecting Malware in PE Files

    Full text link
    The increasing number of sophisticated malware poses a major cybersecurity threat. Portable executable (PE) files are a common vector for such malware. In this work we review and evaluate machine learning-based PE malware detection techniques. Using a large benchmark dataset, we evaluate features of PE files using the most common machine learning techniques to detect malware

    Malware detection based on graph attention networks for intelligent transportation systems

    Get PDF
    Intelligent Transportation Systems (ITS) aim to make transportation smarter, safer, reliable, and environmentally friendly without detrimentally affecting the service quality. ITS can face security issues due to their complex, dynamic, and non-linear properties. One of the most critical security problems is attacks that damage the infrastructure of the entire ITS. Attackers can inject malware code that triggers dangerous actions such as information theft and unwanted system moves. The main objective of this study is to improve the performance of malware detection models using Graph Attention Networks. To detect malware attacks addressing ITS, a Graph Attention Network (GAN)-based framework is proposed in this study. The inputs to this framework are the Application Programming Interface (API)-call graphs obtained from malware and benign Android apk files. During the graph creation, network metrics and the Node2Vec model are utilized to generate the node features. A GAN-based model is combined with different types of node features during the experiments and the performance is compared against Graph Convolutional Network (GCN). Experimental results demonstrated that the integration of the GAN and Node2Vec models provides the best performance in terms of F-measure and accuracy parameters and, also, the use of an attention mechanism in GAN improves the performance. Furthermore, node features generated with Node2Vec resulted in a 3% increase in classification accuracy compared to the features generated with network metrics. 2021 by the authors. Licensee MDPI, Basel, Switzerland.Scopus2-s2.0-8511720183

    Function similarity using family context

    Get PDF
    Finding changed and similar functions between a pair of binaries is an important problem in malware attribution and for the identification of new malware capabilities. This paper presents a new technique called Function Similarity using Family Context (FSFC) for this problem. FSFC trains a Support Vector Machine (SVM) model using pairs of similar functions from two program variants. This method improves upon previous research called Cross Version Contextual Function Similarity (CVCFS) e epresenting a function using features extracted not just from the function itself, but also, from other functions with which it has a caller and callee relationship. We present the results of an initial experiment that shows that the use of additional features from the context of a function significantly decreases the false positive rate, obviating the need for a separate pass for cleaning false positives. The more surprising and unexpected finding is that the SVM model produced by FSFC can abstract function similarity features from one pair of program variants to find similar functions in an unrelated pair of program variants. If validated by a larger study, this new property leads to the possibility of creating generic similar function classifiers that can be packaged and distributed in reverse engineering tools such as IDA Pro and Ghidra.This research was performed in the Internet Commerce Security Lab (ICSL), which is a joint venture with research partners Westpac, IBM, and Federation University Australia
    corecore