49 research outputs found

    Обеспечение визуальной когерентности в обучающих системах дополненной реальности с учетом авиакосмической специфики

    Get PDF
    In May 2022, Saudi Arabian Military Industries, a Saudi government agency, acquired an augmented reality training platform for pilots. In September, the Boeing Corporation began the development of an augmented reality pilot simulator. In November, a similar project was launched by BAE Systems, a leading British developer of aeronautical engineering. These facts allow us to confidently speak about the beginning of a new era of aviation simulators – simulators using the augmented reality technology. One of the promising advantages of this technology is the ability to safely simulate dangerous situations in the real world. A necessary condition for using this advantage is to ensure the visual coherence of augmented reality scenes: virtual objects must be indistinguishable from real ones. All the global IT leaders consider augmented reality as the subsequent surge of radical changes in digital electronics, so visual coherence is becoming a key issue for the future of IT, and in aerospace applications, visual coherence has already acquired practical significance. The Russian Federation lags far behind in studying the problems of visual coherence in general and for augmented reality flight simulators in particular: at the time of publication the authors managed to find only two papers on the subject in the Russian research space, while abroad their number is already approximately a thousand. The purpose of this review article is to create conditions for solving the problem. Visual coherence depends on many factors: lighting, color tone, shadows from virtual objects on real ones, mutual reflections, textures of virtual surfaces, optical aberrations, convergence and accommodation, etc. The article reviews the publications devoted to methods for assessing the conditions of illumination and color tone of a real scene and transferring them to virtual objects using various probes and by individual images, as well as by rendering virtual objects in augmented reality scenes, using neural networks.В мае 2022 года саудовская правительственная структура Saudi Arabian Military Industries приобрела обучающую платформу дополненной реальности для летчиков, в сентябре корпорация Boeing начала разработку тренажера пилота дополненной реальности, в ноябре стартовал аналогичный проект ведущего британского разработчика авиационной техники BAE Systems. Эти факты позволяют уверенно говорить о начале новой эпохи авиационных тренажеров – тренажеров с применением технологии дополненной реальности. Одно из перспективных преимуществ данной технологии – возможность безопасного моделирования опасных ситуаций в реальном мире. Необходимым условием использования этого преимущества является обеспечение визуальной когерентности сцен дополненной реальности: виртуальные объекты должны быть неотличимы от реальных. Все мировые IT-лидеры рассматривают дополненную реальность как следующую «большую волну» радикальных изменений в цифровой электронике, поэтому визуальная когерентность становится ключевым вопросом для будущего IT, а в аэрокосмических приложениях визуальная когерентность уже приобрела практическое значение. В РФ имеет место серьезное отставание в изучении проблематики визуальной когерентности в целом и для авиатренажеров дополненной реальности в частности: на момент публикации авторам удалось обнаружить в российском научном пространстве только две работы по теме, тогда как за рубежом их число уже около тысячи. Цель настоящей обзорной статьи – создать условия для купирования проблемы. Визуальная когерентность зависит от многих факторов: освещения, цветового тона, теней от виртуальных объектов на реальных, взаимных отражений, текстур виртуальных поверхностей, оптических аберраций, конвергенции и аккомодации и др. В статье анализируются публикации, посвященные методам оценки условий освещенности и цветового тона реальной сцены и переноса таковых на виртуальные объекты с использованием зондов и по отдельным изображениям, а также по рендерингу виртуальных объектов в сценах дополненной реальности, в том числе с применением нейросетей

    Enhanced Shadow Retargeting with Light-Source Estimation Using Flat Fresnel Lenses

    Get PDF
    Shadow-retargeting maps depict the appearance of real shadows to virtual shadows given corresponding deformation of scene geometry, such that appearance is seamlessly maintained. By performing virtual shadow reconstruction from unoccluded real-shadow samples observed in the camera frame, this method efficiently recovers deformed shadow appearance. In this manuscript, we introduce a light-estimation approach that enables light-source detection using flat Fresnel lenses that allow this method to work without a set of pre-established conditions. We extend the adeptness of this approach by handling scenarios with multiple receiver surfaces and a non-grounded occluder with high accuracy. Results are presented on a range of objects, deformations, and illumination conditions in real-time Augmented Reality (AR) on a mobile device. We demonstrate the practical application of the method in generating otherwise laborious in-betweening frames for 3D printed stop-motion animatio

    The Geometry and Usage of the Supplementary Fisheye Lenses in Smartphones

    Get PDF
    Nowadays, mobile phones are more than a device that can only satisfy the communication need between people. Since fisheye lenses integrated with mobile phones are lightweight and easy to use, they are advantageous. In addition to this advantage, it is experimented whether fisheye lens and mobile phone combination can be used in a photogrammetric way, and if so, what will be the result. Fisheye lens equipment used with mobile phones was tested in this study. For this, standard calibration of ‘Olloclip 3 in one’ fisheye lens used with iPhone 4S mobile phone and ‘Nikon FC‐E9’ fisheye lens used with Nikon Coolpix8700 are compared based on equidistant model. This experimental study shows that Olloclip 3 in one fisheye lens developed for mobile phones has at least the similar characteristics with classic fisheye lenses. The dimensions of fisheye lenses used with smart phones are getting smaller and the prices are reducing. Moreover, as verified in this study, the accuracy of fisheye lenses used in smartphones is better than conventional fisheye lenses. The use of smartphones with fisheye lenses will give the possibility of practical applications to ordinary users in the near future

    A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor

    Get PDF
    Internet of Things (IoT) is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB) method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN) k-Nearest Neighbor (KNN) algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC) estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP) is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS) algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University’s datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy

    THEORY INTO PRACTICE: "DOMAIN-CENTRIC HANDHELD AUGMENTED REALITY GAME DESIGN" FOR DESIGNERS

    Get PDF
    Master'sMASTER OF ARTS (INDUSTRIAL DESIGN

    Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion

    Get PDF
    Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error)

    A Review of Augmented Reality Applications for History Education and Heritage Visualisation

    Get PDF
    Augmented reality is a field with a versatile range of applications used in many fields including recreation and education. Continually developing technology spanning the last decade has drastically improved the viability for augmented reality projects now that most of the population possesses a mobile device capable of supporting the graphic rendering systems required for them. Education in particular has benefited from these technological advances as there are now many fields of research branching into how augmented reality can be used in schools. For the purposes of Holocaust education however, there has been remarkable little research into how Augmented Reality can be used to enhance its delivery or impact. The purpose of this study is to speculate regarding the following questions: How is augmented reality currently being used to enhance history education? Does the usage of augmented reality assist in developing long-term memories? Is augmented reality capable of conveying the emotional weight of historical events? Will augmented reality be appropriate for teaching a complex field such as the Holocaust? To address these, multiple studies have been analysed for their research methodologies and how their findings may assist with the development of Holocaust education

    A Fast and Robust Extrinsic Calibration for RGB-D Camera Networks

    Get PDF
    From object tracking to 3D reconstruction, RGB-Depth (RGB-D) camera networks play an increasingly important role in many vision and graphics applications. Practical applications often use sparsely-placed cameras to maximize visibility, while using as few cameras as possible to minimize cost. In general, it is challenging to calibrate sparse camera networks due to the lack of shared scene features across different camera views. In this paper, we propose a novel algorithm that can accurately and rapidly calibrate the geometric relationships across an arbitrary number of RGB-D cameras on a network. Our work has a number of novel features. First, to cope with the wide separation between different cameras, we establish view correspondences by using a spherical calibration object. We show that this approach outperforms other techniques based on planar calibration objects. Second, instead of modeling camera extrinsic calibration using rigid transformation, which is optimal only for pinhole cameras, we systematically test different view transformation functions including rigid transformation, polynomial transformation and manifold regression to determine the most robust mapping that generalizes well to unseen data. Third, we reformulate the celebrated bundle adjustment procedure to minimize the global 3D reprojection error so as to fine-tune the initial estimates. Finally, our scalable client-server architecture is computationally efficient: the calibration of a five-camera system, including data capture, can be done in minutes using only commodity PCs. Our proposed framework is compared with other state-of-the-arts systems using both quantitative measurements and visual alignment results of the merged point clouds
    corecore