78 research outputs found

    Who wrote this scientific text?

    No full text
    The IEEE bibliographic database contains a number of proven duplications with indication of the original paper(s) copied. This corpus is used to test a method for the detection of hidden intertextuality (commonly named "plagiarism"). The intertextual distance, combined with the sliding window and with various classification techniques, identifies these duplications with a very low risk of error. These experiments also show that several factors blur the identity of the scientific author, including variable group authorship and the high levels of intertextuality accepted, and sometimes desired, in scientific papers on the same topic

    L'intertextualité dans les publications scientifiques

    No full text
    La base de données bibliographiques de l'IEEE contient un certain nombre de duplications avérées avec indication des originaux copiés. Ce corpus est utilisé pour tester une méthode d'attribution d'auteur. La combinaison de la distance intertextuelle avec la fenêtre glissante et diverses techniques de classification permet d'identifier ces duplications avec un risque d'erreur très faible. Cette expérience montre également que plusieurs facteurs brouillent l'identité de l'auteur scientifique, notamment des collectifs de chercheurs à géométrie variable et une forte dose d'intertextualité acceptée voire recherchée

    Interdependent Security and Compliance in Service Selection

    Get PDF
    Application development today is characterized by ever shorter release cycles and more frequent change requests. Hence development methods such as service composition are increasingly arousing interest as viable alternative approaches. While employing web services as building blocks rapidly reduces development times, it raises new challenges regarding security and compliance since their implementation remains a black box which usually cannot be controlled. Security in particular gets even more challenging since some applications require domainspecific security objectives such as location privacy. Another important aspect is that security objectives are in general no singletons but subject to interdependence. Hence this thesis addresses the question of how to consider interdependent security and compliance in service composition. Current approaches for service composition do neither consider interdependent security nor compliance. Selecting suiting services for a composition is a combinatorial problem which is known to be NP-hard. Often this problem is solved utilizing genetic algorithms in order to obtain near-optimal solutions in reasonable time. This is particularly the case if multiple objectives have to be optimized simultaneously such as price, runtime and data encryption strength. Security properties of compositions are usually verified using formal methods. However, none of the available methods supports interdependence effects or defining arbitrary security objectives. Similarly, no current approach ensures compliance of service compositions during service selection. Instead, compliance is verified afterwards which might necessitate repeating the selection process in case of a non-compliant solution. In this thesis, novel approaches for considering interdependent security and compliance in service composition are being presented and discussed. Since no formal methods exist covering interdependence effects for security, this aspect is covered in terms of a security assessment. An assessment method is developed which builds upon the notion of structural decomposition in order to assess the fulfillment of arbitrary security objectives in terms of a utility function. Interdependence effects are being modeled as dependencies between utility functions. In order to enable compliance-awareness, an approach is presented which checks compliance of compositions during service selection and marks non-compliant parts. This enables to repair the corresponding parts during the selection process by replacing the current services and hence avoids the necessity to repeat the selection process. It is demonstrated how to embed the presented approaches into a genetic algorithm in order to ease integration with existing approaches for service composition. The developed approaches are being compared to state-of-the-art genetic algorithms using simulations

    Multi-Dimensional-Personalization in mobile contexts

    Get PDF
    During the dot com era the word "personalisation” was a hot buzzword. With the fall of the dot com companies the topic has lost momentum. As the killer application for UMTS or the mobile internet has yet to be identified, the concept of Multi-Dimensional-Personalisation (MDP) could be a candidate. Using this approach, a recommendation of mobile advertisement or marketing (i.e., recommendations or notifications), online content, as well as offline events, can be offered to the user based on their known interests and current location. Instead of having to request or pull this information, the new service concept would proactively provide the information and services – with the consequence that the right information or service could therefore be offered at the right place, at the right time. The growing availability of "Location-based Services“ for mobile phones is a new target for the use of personalisation. "Location-based Services“ are information, for example, about restaurants, hotels or shopping malls with offers which are in close range / short distance to the user. The lack of acceptance for such services in the past is based on the fact that early implementations required the user to pull the information from the service provider. A more promising approach is to actively push information to the user. This information must be from interest to the user and has to reach the user at the right time and at the right place. This raises new requirements on personalisation which will go far beyond present requirements. It will reach out from personalisation based only on the interest of the user. Besides the interest, the enhanced personalisation has to cover the location and movement patterns, the usage and the past, present and future schedule of the user. This new personalisation paradigm has to protect the user’s privacy so that an approach supporting anonymous recommendations through an extended "Chinese Wall“ will be described

    SLA management of non-computational services.

    Get PDF
    El incremento en el uso de arquitecturas orientadas a servicios en los últimos 15 años ha propiciado la propuesta de numerosas técnicas para automatizar y dar soporte al uso de dichos servicios. Un elemento fundamental en la provisión de servicios es el Acuerdo de Nivel de Servicio (ANS), donde se formalizan los requisitos y garantías de consumidor y proveedor respecto del rendimiento del servicio. Las propuestas para servicios computacionales, además de proveer modelos formales para describirlos, proponen la automatización de las diferentes etapas del ciclo de vida del ANS, tales como la negociación de las garantías para crear un ANS, el despliegue de servicios basados en el ANS, o la gestión de los recursos para cumplir las garantías provistas en el mismo. Sin embargo, en los servicios tradicionales, no computacionales, es decir, los servicios que no son ejecutados por recursos computacionales, tales como los servicios de logística o de desarrollo de software, la gestión de sus ANSs todavía se realiza por medios ad-hoc. Así, las soluciones existentes no pueden ser reutilizadas por diferentes servicios. Y, en la mayoría de los casos, esta gestión se hace de manera manual (p.e. revisión de los objetivos acordados en los ANSs de servicios de transporte), por lo que la evaluación de estos ANSs es susceptible a errores y se suele retrasar respecto a la ejecución del servicio (p.e. cuando el ANS ha finalizado), por lo que no se pueden tomar acciones preventivas para evitar el incumplimiento del ANS o estas acciones no son rentables. En estos escenarios, aparecen, además, acuerdos marco para un periodo largo (p.e. 1 aõ), durante el cual pueden aparecen ANSs relacionados con éste para un periodo más específico y el análisis de la coherencia entre acuerdos marco y acuerdos específicos es complicada de hacer durante la ejecución del servicio. En esta tesis, nos proponemos automatizar parcialmente la gestión de los ANSs de servicios no computacionales. Así, por un lado, proponemos que los modelos para servicios computacionales se extiendan a servicios no computacionales, de manera que permitan describir la operativa del servicio y sus garantías. Y, por otro lado, basado en estos modelos, proporcionamos el diseño de operaciones para gestionar el ciclo de vida de los ANS. Concretamente, estas operaciones se basan en las fases de despligue y evaluación del ANS. De forma específica, esta tesis propone tres contribuciones principales. Primero, (A) extender iAgree para dar soporte al modelado de los ANS de servicios no computacionales. Segundo, (B) dar soporte al ciclo de vida de dichos ANS mediante la formalización de las operaciones citadas (configuración del servicio basada en el ANS y monitorización del mismo) y, a partir de estas operaciones, implementamos una arquitectura de referencia para estas operaciones. Y, por último, (C) proveemos el modelado de la relación entre acuerdos marco y específicos que relacione sus términos junto con la formalización de las operaciones para el análisis que aparecen entre ellos. Otros aspectos del ciclo de vida del servicio y del ANS, como la gestión de los recursos para mejorar el rendimiento del servicio o el uso de técnicas (como machine learning) para la predicción del cumplimiento de los ANSs están fuera del contexto de esta tesis, pero se plantean como futuras líneas de extensión. Este trabajo se ha basado en ANSs reales de diferentes dominios, tales como servicios de Transporte y Logística, proveedores de Cloud or outsourcing de desarrollo TIC, que se han utilizado para validar las propuestas. Además, las contribuciones presentadas se han aplicado en el contexto de proyectos reales de soporte de sistemas TIC.The rise of computational services in the last 15 years brought the proposal of a number of techniques to automate and support their enactment. One key element in services is the Service Level Agreement (SLA), where the requirements of service customer are matched with the performance levels from the service provider to define service level guarantees and related responsibilities. The proposals from computational domains are oriented to automate the different stages in the SLA Lifecycle, such as the negotiation of terms which will form the SLA, the deployment of services based on the SLA artifact or the management of computational resources to accomplish SLA goals on runtime. However, traditional non-computational services, that is, services which are not performed by computational resources, such as logistics or software development services, are still supported by ad-hoc mechanisms. Therefore, the existing solutions for the management of their SLAs cannot be reused for other services. This management is usually manually performed (e.g.: reviewing of the goals of an SLA in transport service), so their evaluation is error-prone and delayed regarding the service execution (e.g.: when the SLA is finished), so preemptive actions to avoid SLA violations cannot be taken or/and are expensive to perform. Furthermore, these SLAs are sometimes described on a long term basis (frame agreements), and related SLAs can appear for a shorter term (specific agreements) and the analysis of the validity among them is complex to perform on runtime. In this dissertation, we aim at partially automate the management of SLAs in noncomputational services. On the one hand, we suggest that existing models for computational services can be extended to non computational services and enable the description of the service operative and their guarantees. And, on the other hand, we provide a design for operations to partially support the SLA Lifecycle, based on the previous models. Specifically, these operations are mainly focused on the deployment and fulfillment stages of the SLA. Therefore, the contributions of this dissertation are three. First, (A) providing a model to describe Service Level Agreements of non computational services, as an extension of iAgree, an existing model for SLAs of computational services. Second side, (B) supporting the SLA Lifecycle with the design of the aforementioned operations (service configuration based on SLA and monitoring of SLA) and implementing a reference architecture for such operations. And, lastly, (C) providing a model for frame and specific agreements which relates their terms and formalises the analysis operations among them. Other related operations of the service lifecycle as the management of resources to improve service performance or the use of novel techniques (such as machine learning) to predict the SLA accomplishment are out of the scope of this thesis but planned as future line of extension. The current dissertation has been based on real SLAs from different domains, such as Transport & Logistics, public Cloud providers or IT Maintenance outsourcing, which have been used to validate the proposal. And, furthermore, the contributions have been applied in the context of real IT Maintenance outsourcing projects

    Conformance Checking and Simulation-based Evolutionary Optimization for Deployment and Reconfiguration of Software in the Cloud

    Get PDF
    Many SaaS providers nowadays want to leverage the cloud's capabilities also for their existing applications, for example, to enable sound scalability and cost-effectiveness. This thesis provides the approach CloudMIG that supports SaaS providers to migrate those applications to IaaS and PaaS-based cloud environments. CloudMIG consists of a step-by-step process and focuses on two core components. (1) Restrictions imposed by specific cloud environments (so-called cloud environment constraints (CECs)), such as a limited file system access or forbidden method calls, can be validated by an automatic conformance checking approach. (2) A cloud deployment option (CDO) determines which cloud environment, cloud resource types, deployment architecture, and runtime reconfiguration rules for exploiting a cloud's elasticity should be used. The implied performance and costs can differ in orders of magnitude. CDOs can be automatically optimized with the help of our simulation-based genetic algorithm CDOXplorer. Extensive lab experiments and an experiment in an industrial context show CloudMIG's applicability and the excellent performance of its two core components
    • …
    corecore