16 research outputs found

    Transceiver architectures and sub-mW fast frequency-hopping synthesizers for ultra-low power WSNs

    Get PDF
    Wireless sensor networks (WSN) have the potential to become the third wireless revolution after wireless voice networks in the 80s and wireless data networks in the late 90s. This revolution will finally connect together the physical world of the human and the virtual world of the electronic devices. Though in the recent years large progress in power consumption reduction has been made in the wireless arena in order to increase the battery life, this is still not enough to achieve a wide adoption of this technology. Indeed, while nowadays consumers are used to charge batteries in laptops, mobile phones and other high-tech products, this operation becomes infeasible when scaled up to large industrial, enterprise or home networks composed of thousands of wireless nodes. Wireless sensor networks come as a new way to connect electronic equipments reducing, in this way, the costs associated with the installation and maintenance of large wired networks. To accomplish this task, it is necessary to reduce the energy consumption of the wireless node to a point where energy harvesting becomes feasible and the node energy autonomy exceeds the life time of the wireless node itself. This thesis focuses on the radio design, which is the backbone of any wireless node. A common approach to radio design for WSNs is to start from a very simple radio (like an RFID) adding more functionalities up to the point in which the power budget is reached. In this way, the robustness of the wireless link is traded off for power reducing the range of applications that can draw benefit form a WSN. In this thesis, we propose a novel approach to the radio design for WSNs. We started from a proven architecture like Bluetooth, and progressively we removed all the functionalities that are not required for WSNs. The robustness of the wireless link is guaranteed by using a fast frequency hopping spread spectrum technique while the power budget is achieved by optimizing the radio architecture and the frequency hopping synthesizer Two different radio architectures and a novel fast frequency hopping synthesizer are proposed that cover the large space of applications for WSNs. The two architectures make use of the peculiarities of each scenario and, together with a novel fast frequency hopping synthesizer, proved that spread spectrum techniques can be used also in severely power constrained scenarios like WSNs. This solution opens a new window toward a radio design, which ultimately trades off flexibility, rather than robustness, for power consumption. In this way, we broadened the range of applications for WSNs to areas in which security and reliability of the communication link are mandatory

    Periodically Disturbed Oscillators

    Get PDF
    By controlling the timing of events and enabling the transmission of data over long distances, oscillators can be considered to generate the "heartbeat" of modern electronic systems. Their utility, however, is boosted significantly by their peculiar ability to synchronize to external signals that are themselves periodic in time. Although this fascinating phenomenon has been studied by scientists since the 1600s, models for describing this behavior have seen a disconnect between the rigorous, methodical approaches taken by mathematicians and the design-oriented, physically-based analyses carried out by engineers. While the analytical power of the former is often concealed by an inundation of abstract mathematical machinery, the accuracy and generality of the latter are constrained by the empirical nature of the ensuing derivations. We hope to bridge that gap here. In this thesis, a general theory of electrical oscillators under the influence of a periodic injection is developed from first principles. Our approach leads to a fundamental yet intuitive understanding of the process by which oscillators lock to a periodic injection, as well as what happens when synchronization fails and the oscillator is instead injection pulled. By considering the autonomous and periodically time-varying nature that underlies all oscillators, we build a time-synchronous model that is valid for oscillators of any topology and periodic disturbances of any shape. A single first-order differential equation is shown to be capable of making accurate, quantitative predictions about a wide array of properties of periodically disturbed oscillators: the range of injection frequencies for which synchronization occurs, the phase difference between the injection and the oscillator under lock, stable vs. unstable modes of locking, the pull-in process toward lock, the dynamics of injection pulling, as well as phase noise in both free-running and injection-locked oscillators. The framework also naturally accommodates superharmonic injection-locked frequency division, subharmonic injection-locked frequency multiplication, and the general case of an arbitrary rational relationship between the injection and oscillation frequencies. A number of novel insights for improving the performance of systems that utilize injection locking are also elucidated. In particular, we explore how both the injection waveform and the oscillator's design can be modified to optimize the lock range. The resultant design techniques are employed in the implementation of a dual-moduli prescaler for frequency synthesis applications which features low power consumption, a wide operating range, and a small chip area. For the commonly used inductor-capacitor (LC) oscillator, we make a simple modification to our framework that takes the oscillation amplitude into account, greatly enhancing the model's accuracy for large injections. The augmented theory uniquely captures the asymmetry of the lock range as well as the distinct characteristics exhibited by different types of LC oscillators. Existing injection locking and pulling theories in the available literature are subsumed as special cases of our model. It is important to note that even though the veracity of our theoretical predictions degrades as the size of the injection grows due to our framework's linearization with respect to the disturbance, our model's validity across a broad range of practical injection strengths are borne out by simulations and measurements on a diverse collection of integrated LC, ring, and relaxation oscillators. Lastly, we also present a phasor-based analysis of LC and ring oscillators which yields a novel perspective into how the injection current interacts with the oscillator's core nonlinearity to facilitate injection locking.</p

    RF CMOS Oscillators for Modern Wireless Applications

    Get PDF
    While mobile phones enjoy the largest production volume ever of any consumer electronics products, the demands they place on radio-frequency (RF) transceivers are particularly aggressive, especially on integration with digital processors, low area, low power consumption, while being robust against process-voltage-temperature variations. Since mobile terminals inherently operate on batteries, their power budget is severely constrained. To keep up with the ever increasing data-rate, an ever-decreasing power per bit is required to maintain the battery lifetime. The RF oscillator is the second most power-hungry block of a wireless radio (after power amplifiers). Consequently, any power reduction in an RF oscillator will greatly benefit the overall power efficiency of the cellular transceiver. Moreover, the RF oscillators' purity limits the transceiver performance. The oscillator's phase noise results in power leakage into adjacent channels in a transmit mode and reciprocal mixing in a receive mode. On the other hand, the multi-standard and multi-band transceivers that are now trending demand wide tuning range oscillators. However, broadening the oscillator’s tuning range is usually at the expense of die area (cost) or phase noise. The main goal of this book is to bring forth the exciting and innovative RF oscillator structures that demonstrate better phase noise performance, lower cost, and higher power efficiency than currently achievable. Technical topics discussed in RF CMOS Oscillators for Modern Wireless Applications include: Design and analysis of low phase-noise class-F oscillators Analyze a technique to reduce 1/f noise up-conversion in the oscillators Design and analysis of low power/low voltage oscillators Wide tuning range oscillators Reliability study of RF oscillators in nanoscale CMO

    Optical design and numerical modeling of the AEI 10 m prototype sub-SQL interferometer

    Get PDF
    [no abstract

    Industrial Applications: New Solutions for the New Era

    Get PDF
    This book reprints articles from the Special Issue "Industrial Applications: New Solutions for the New Age" published online in the open-access journal Machines (ISSN 2075-1702). This book consists of twelve published articles. This special edition belongs to the "Mechatronic and Intelligent Machines" section

    Site-Directed Research and Development FY 2012 Annual Report

    Full text link
    corecore