3 research outputs found

    Delta-Sigma Modulator based Compact Sensor Signal Acquisition Front-end System

    Full text link
    The proposed delta-sigma modulator (ΔΣ\Delta\SigmaM) based signal acquisition architecture uses a differential difference amplifier (DDA) customized for dual purpose roles, namely as instrumentation amplifier and as integrator of ΔΣ\Delta\SigmaM. The DDA also provides balanced high input impedance for signal from sensors. Further, programmable input amplification is obtained by adjustment of ΔΣ\Delta\SigmaM feedback voltage. Implementation of other functionalities, such as filtering and digitization have also been incorporated. At circuit level, a difference of transconductance of DDA input pairs has been proposed to reduce the effect of input resistor thermal noise of front-end R-C integrator of the ΔΣ\Delta\SigmaM. Besides, chopping has been used for minimizing effect of Flicker noise. The resulting architecture is an aggregation of functions of entire signal acquisition system within the single block of ΔΣ\Delta\SigmaM, and is useful for a multitude of dc-to-medium frequency sensing and similar applications that require high precision at reduced size and power. An implementation of this in 0.18-μ\mum CMOS process has been presented, yielding a simulated peak signal-to-noise ratio of 80 dB and dynamic range of 109dBFS in an input signal band of 1 kHz while consuming 100 μ\muW of power; with the measured signal-to-noise ratio being lower by about 9 dB.Comment: 13 pages, 16 figure

    Contribution to time domain readout circuits design for multi-standard sensing system for low voltage supply and high-resolution applications

    Get PDF
    Mención Internacional en el título de doctorThis research activity has the purpose of open new possibilities in the design of capacitance-to-digital converters (CDCs) by developing a solution based on time domain conversion. This can be applied to applications related with the Internet-of-Things (IoT). These applications are present in any electronic devices where sensing is needed. To be able to reduce the area of the whole system with the required performance, micro-electromechanical systems (MEMS) sensors are used in these applications. We propose a new family of sensor readout electronics to be integrated with MEMS sensors. Within the time domain converters, Dual Slope (DS) topology is very interesting to explore a new compromise between performances, area and power consumption. DS topology has been extensively used in instrumentation. The simplicity and robustness of the blocks inside classical DS converters it is the main advantage. However, they are not efficient for applications where higher bandwidth is required. To extend the bandwidth, DS converters have been introduced into ΔΣ loops. This topology has been named as integrating converters. They increase the bandwidth compare to classical DS architecture but at the expense of higher complexity. In this work we propose the use of a new family of DS converters that keep the advantages of the classical architecture and introduce noise shaping. This way the bandwidth is increased without extra blocks. The Self-Compensated noise-shaped DS converter (the name given to the new topology) keeps the signal transfer function (STF) and the noise transfer function (NTF) of Integrating converters. However, we introduce a new arrangement in the core of the converter to do noise shaping without extra circuitry. This way the simplicity of the architecture is preserved. We propose to use the Self-Compensated DS converter as a CDC for MEMS sensors. This work makes a study of the best possible integration of the two blocks to keep the signal integrity considering the electromechanical behavior of the sensor. The purpose of this front-end is to be connected to any kind of capacitive MEMS sensor. However, to prove the concepts developed in this thesis the architecture has been connected to a pressure MEMS sensor. An experimental prototype was implemented in 130-nm CMOS process using the architecture mentioned before. A peak SNR of 103.9 dB (equivalent to 1Pa) has been achieved within a time measurement of 20 ms. The final prototype has a power consumption of 220 μW with an effective area of 0.317 mm2. The designed architecture shows good performance having competitive numbers against high resolution topologies in amplitude domain.Esta actividad de investigación tiene el propósito de explorar nuevas posibilidades en el diseño de convertidores de capacitancia a digital (CDC) mediante el desarrollo de una solución basada en la conversión en el dominio del tiempo. Estos convertidores se pueden utilizar en aplicaciones relacionadas con el mercado del Internet-de-las-cosas (IoT). Hoy en día, estas aplicaciones están presentes en cualquier dispositivo electrónico donde se necesite sensar una magnitud. Para poder reducir el área de todo el sistema con el rendimiento requerido, se utilizan sensores de sistemas micro-electromecánicos (MEMS) en estas aplicaciones. Proponemos una nueva familia de electrónica de acondicionamiento para integrar con sensores MEMS. Dentro de los convertidores de dominio de tiempo, la topología del doble-rampa (DS) es muy interesante para explorar un nuevo compromiso entre rendimiento, área y consumo de energía. La topología de DS se ha usado ampliamente en instrumentación. La simplicidad y la solidez de los bloques dentro de los convertidores DS clásicos es la principal ventaja. Sin embargo, no son eficientes para aplicaciones donde se requiere mayor ancho de banda. Para ampliar el ancho de banda, los convertidores DS se han introducido en bucles ΔΣ. Esta topología ha sido nombrada como Integrating converters. Esta topología aumenta el ancho de banda en comparación con la arquitectura clásica de DS, pero a expensas de una mayor complejidad. En este trabajo, proponemos el uso de una nueva familia de convertidores DS que mantienen las ventajas de la arquitectura clásica e introducen la configuración del ruido. De esta forma, el ancho de banda aumenta sin bloques adicionales. El convertidor Self-Compensated noise-shaped DS (el nombre dado a la nueva topología) mantiene la función de transferencia de señal (STF) y la función de transferencia de ruido (NTF) de los Integrating converters. Sin embargo, presentamos una nueva topología en el núcleo del convertidor para conformar el ruido sin circuitos adicionales. De esta manera, se preserva la simplicidad de la arquitectura. Proponemos utilizar el Self-Compensated noise-shaped DS como un CDC para sensores MEMS. Este trabajo hace un estudio de la mejor integración posible de los dos bloques para mantener la integridad de la señal considerando el comportamiento electromecánico del sensor. El propósito de este circuito de acondicionamiento es conectarse a cualquier tipo de sensor MEMS capacitivo. Sin embargo, para demostrar los conceptos desarrollados en esta tesis, la arquitectura se ha conectado a un sensor MEMS de presión. Se ha implementado dos prototipos experimentales en un proceso CMOS de 130-nm utilizando la arquitectura mencionada anteriormente. Se ha logrado una relación señal-ruido máxima de 103.9 dB (equivalente a 1 Pa) con un tiempo de medida de 20 ms. El prototipo final tiene un consumo de energía de 220 μW con un área efectiva de 0.317 mm2. La arquitectura diseñada muestra un buen rendimiento comparable con las arquitecturas en el dominio de la amplitud que muestran resoluciones equivalentes.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Pieter Rombouts.- Secretario: Alberto Rodríguez Pérez.- Vocal: Dietmar Strãußnig

    Digital Intensive Mixed Signal Circuits with In-situ Performance Monitors

    Get PDF
    University of Minnesota Ph.D. dissertation.November 2016. Major: Electrical/Computer Engineering. Advisor: Chris Kim. 1 computer file (PDF); x, 137 pages.Digital intensive circuit design techniques of different mixed-signal systems such as data converters, clock generators, voltage regulators etc. are gaining attention for the implementation of modern microprocessors and system-on-chips (SoCs) in order to fully utilize the benefits of CMOS technology scaling. Moreover different performance improvement schemes, for example, noise reduction, spur cancellation, linearity improvement etc. can be easily performed in digital domain. In addition to that, increasing speed and complexity of modern SoCs necessitate the requirement of in-situ measurement schemes, primarily for high volume testing. In-situ measurements not only obviate the need for expensive measurement equipments and probing techniques, but also reduce the test time significantly when a large number of chips are required to be tested. Several digital intensive circuit design techniques are proposed in this dissertation along with different in-situ performance monitors for a variety of mixed signal systems. First, a novel beat frequency quantization technique is proposed in a two-step VCO quantizer based ADC implementation for direct digital conversion of low amplitude bio- potential signals. By direct conversion, it alleviates the requirement of the area and power consuming analog-frontend (AFE) used in a conventional ADC designs. This prototype design is realized in a 65nm CMOS technology. Measured SNDR is 44.5dB from a 10mVpp, 300Hz signal and power consumption is only 38μW. Next, three different clock generation circuits, a phase-locked loop (PLL), a multiplying delay-locked loop (MDLL) and a frequency-locked loop (FLL) are presented. First a 0.4-to-1.6GHz sub-sampling fractional-N all digital PLL architecture is discussed that utilizes a D-flip-flop as a digital sub-sampler. Measurement results from a 65nm CMOS test-chip shows 5dB lower phase noise at 100KHz offset frequency, compared to a conventional architecture. The Digital PLL (DPLL) architecture is further extended for a digital MDLL implementation in order to suppress the VCO phase noise beyond the DPLL bandwidth. A zero-offset aperture phase detector (APD) and a digital- to-time converter (DTC) are employed for static phase-offset (SPO) cancellation. A unique in-situ detection circuitry achieves a high resolution SPO measurement in time domain. A 65nm test-chip shows 0.2-to-1.45GHz output frequency range while reducing the phase-noise by 9dB compared to a DPLL. Next, a frequency-to-current converter (FTC) based fractional FLL is proposed for a low accuracy clock generation in an extremely low area for IoT application. High density deep-trench capacitors are used for area reduction. The test-chip is fabricated in a 32nm SOI technology that takes only 0.0054mm2 active area. A high-resolution in-situ period jitter measurement block is also incorporated in this design. Finally, a time based digital low dropout (DLDO) regulator architecture is proposed for fine grain power delivery over a wide load current dynamic range and input/output voltage in order to facilitate dynamic voltage and frequency scaling (DVFS). High- resolution beat frequency detector dynamically adjusts the loop sampling frequency for ripple and settling time reduction due to load transients. A fixed steady-state voltage offset provides inherent active voltage positioning (AVP) for ripple reduction. Circuit simulations in a 65nm technology show more than 90% current efficiency for 100X load current variation, while it can operate for an input voltage range of 0.6V – 1.2V
    corecore