1,491 research outputs found

    Direct Digital Frequency Synthesizer Architecture for Wireless Communication in 90 NM CMOS Technology

    Get PDF
    Software radio is one promising field that can meet the demands for low cost, low power, and high speed electronic devices for wireless communication. At the heart of software radio is a programmable oscillator called a Direct Digital Synthesizer (DDS). DDS has the capabilities of rapid frequency hopping by digital software control while operating at very high frequencies and having sub-hertz resolution. Nevertheless, the digital-to-analog converter (DAC) and the read-only-memory (ROM) look-up table, building blocks of the DDS, prevent the DDS to be used in wireless communication because they introduce errors and noises to the DDS and their performances deteriorate at high speed. The DAC and ROM are replaced in this thesis by analog active filters that convert the square wave output of the phase accumulator directly into a sine wave. The proposed architecture operates with a reference clock of 9.09 GHz and can be fully-integrated in 90 nm CMOS technology

    High Frequency, High Linearity and Low Noise Digital to Time Converter for Phase Adjustment

    Get PDF
    Nowadays, fast communication systems have become vital for our lifestyle. As a result, the digital PLL fulfils a very important role as frequency synthesizer, demodulator or distributor of clock signals in microprocessors and similar digital circuits. Thus, the correction of the signal using a phase adjust- ment is essential for the good operation of the PLL. In this work, it is proposed a variable slope digital to time converter (DTC), as a programmable delay line, used for the correction of the phase of a digital PLL. The work is focused on the study of the performance of the circuit, through the evaluation of fundamental parameters such as RMS jitter, line- arity, resolution and delay range. Accordingly, it is employed a 4-bit topology using 130 nm MOSFET technology. The in- tended DTC takes advantage of CMOS inverters, due to their simplicity and low noise, and capacitors, for the programmable delay RC network. The DTC functioning is based on the activation of switching transistors to trigger the programmable capacitors, through a code to define the number of capacitors that introduce delay. The circuit is complemented with a simple CMOS inverter as a comparator that triggers when the threshold voltage is attained and an output buffer employed to correct the slopes of the signal. The proposed DTC proposed is a single-ended architecture that achieves 52.50 fs RMS jitter, and the resulting DNL and INL are equivalent to 0.1124 LSB and 0.09773 LSB, respectively. The 4-bit de- lay line has a resolution of 15.2 ps, an area of 0.018 mm2 and a power consumption of 62.8 ฮผW from a 1.2 V low dropout regulator (LDO).Atualmente, os sistemas de comunicaรงรฃo rรกpida tornaram-se vitais para o nosso estilo de vida. Como resultado, a PLL digital apresenta um papel importante em funรงรตes como sintetizador de frequรชn- cia, demodulador ou distribuidor de sinais de relรณgio de microprocessadores ou circuitos digitais seme- lhantes. Assim, a correรงรฃo do sinal utilizando um ajuste de fase รฉ essencial para o bom funcionamento da PLL. Neste trabalho, รฉ proposto um conversor digital para tempo de inclinaรงรฃo de curva variรกvel, como uma linha de atraso programรกvel, utilizada para corrigir a fase de uma PLL digital. Este trabalho รฉ focado no estudo da performance do dispositivo, atravรฉs da avaliaรงรฃo de parรขme- tros fundamentais como RMS jitter, linearidade, resoluรงรฃo e range de atraso. Desta forma, a topologia implementada utiliza 4 bits e tecnologia MOSFET 130 . O conversor digital para tempo รฉ criado utilizando inversores CMOS, que tรชm as vantagens de apresentar simplicidade e baixo ruรญdo, e condensadores, utilizados para programar a rede de atraso de RC. Este funciona com base na ativaรงรฃo de transรญstores, empregues como interruptores para acionar os conden- sadores programรกveis, atravรฉs de um cรณdigo que define o nรบmero de condensadores ligados que intro- duzem atraso. O circuito รฉ complementado com um inversor CMOS como comparador que รฉ acionado quando a voltagem de threshold รฉ atingida e um buffer de saรญda implementado para corrigir a inclinaรงรฃo das curvas. O respetivo conversor apresenta uma arquitetura com uma รบnica saรญda que รฉ capaz de atingir 52.50 fs RMS jitter, e possuรญ DNL e INL equivalente a 0.1124 LSB e 0.09773 LSB, respetivamente. A linha de atraso de 4 bits tem uma resoluรงรฃo de 15.2 ps, uma รกrea de 0.018 mm2 e um consumo de potรชncia de 62.8 ฮผW vindo de um regulador de baixa queda de tensรฃo de 1.2 V

    Radiation Hardened by Design Methodologies for Soft-Error Mitigated Digital Architectures

    Get PDF
    abstract: Digital architectures for data encryption, processing, clock synthesis, data transfer, etc. are susceptible to radiation induced soft errors due to charge collection in complementary metal oxide semiconductor (CMOS) integrated circuits (ICs). Radiation hardening by design (RHBD) techniques such as double modular redundancy (DMR) and triple modular redundancy (TMR) are used for error detection and correction respectively in such architectures. Multiple node charge collection (MNCC) causes domain crossing errors (DCE) which can render the redundancy ineffectual. This dissertation describes techniques to ensure DCE mitigation with statistical confidence for various designs. Both sequential and combinatorial logic are separated using these custom and computer aided design (CAD) methodologies. Radiation vulnerability and design overhead are studied on VLSI sub-systems including an advanced encryption standard (AES) which is DCE mitigated using module level coarse separation on a 90-nm process with 99.999% DCE mitigation. A radiation hardened microprocessor (HERMES2) is implemented in both 90-nm and 55-nm technologies with an interleaved separation methodology with 99.99% DCE mitigation while achieving 4.9% increased cell density, 28.5 % reduced routing and 5.6% reduced power dissipation over the module fences implementation. A DMR register-file (RF) is implemented in 55 nm process and used in the HERMES2 microprocessor. The RF array custom design and the decoders APR designed are explored with a focus on design cycle time. Quality of results (QOR) is studied from power, performance, area and reliability (PPAR) perspective to ascertain the improvement over other design techniques. A radiation hardened all-digital multiplying pulsed digital delay line (DDL) is designed for double data rate (DDR2/3) applications for data eye centering during high speed off-chip data transfer. The effect of noise, radiation particle strikes and statistical variation on the designed DDL are studied in detail. The design achieves the best in class 22.4 ps peak-to-peak jitter, 100-850 MHz range at 14 pJ/cycle energy consumption. Vulnerability of the non-hardened design is characterized and portions of the redundant DDL are separated in custom and auto-place and route (APR). Thus, a range of designs for mission critical applications are implemented using methodologies proposed in this work and their potential PPAR benefits explored in detail.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    High-speed Low-voltage CMOS Flash Analog-to-Digital Converter for Wideband Communication System-on-a-Chip

    Get PDF
    With higher-level integration driven by increasingly complex digital systems and downscaling CMOS processes available, system-on-a-chip (SoC) is an emerging technology of low power, high cost effectiveness and high reliability and is exceedingly attractive for applications in high-speed data conversion wireless and wideband communication systems. This research presents a novel ADC comparator design methodology; the speed and performance of which is not restricted by the supply voltage reduction and device linearity deterioration in scaling-down CMOS processes. By developing a dynamic offset suppression technique and a circuit optimization method, the comparator can achieve a 3 dB frequency of 2 GHz in 130 nanometer (nm) CMOS process. Combining this new comparator design and a proposed pipelined thermometer-Gray- binary encoder designed by the DCVSPG logic, a high-speed, low-voltage clocked-digital- comparator (CDC) pipelined CMOS flash ADC architecture is proposed for wideband communication SoC. This architecture has advantages of small silicon area, low power, and low cost. Three CDC-based pipelined CMOS flash ADCs were implemented in 130 nm CMOS process and their experimental results are reported: 1. 4-b, 2.5-GSPS ADC: SFDR of 21.48-dB, SNDR of 15.99-dB, ENOB of 2.4-b, ERBW of 1-GHz, power of 7.9-mW, and area of 0.022-mm2. 2. 4-b, 4-GSPS ADC: SFDR of 25-dB, SNDR of 18.6-dB, ENOB of 2.8-b, ERBW of 2-GHz, power of 11-mW. 3. 6-b, 4-GSPS ADC: SFDR of 48-dB at a signal frequency of 11.72-MHz, SNDR of 34.43-dB, ENOB of 5.4-b, power of 28-mW. An application of the proposed CDC-based pipelined CMOS flash ADC is 1-GHz bandwidth, 2.5-GSPS digital receiver on a chip. To verify the performance of the receiver, a mixed-signal block-level simulation and verification flow was built in Cadence AMS integrated platform. The verification results of the digital receiver using a 4-b 2.5-GSPS CDC-based pipelined CMOS ADC, a 256-point, 12-point kernel function FFT and a frequency detection logic show that two tone signals up to 1125 MHz can be detected and discriminated. A notable contribution of this research is that the proposed ADC architecture and the comparator design with dynamic offset suppression and optimization are extremely suitable for future VDSM CMOS processes and make all-digital receiver SoC design practical

    Voltage stacking for near/sub-threshold operation

    Get PDF

    ๊ณ ์† ์‹œ๋ฆฌ์–ผ ๋งํฌ๋ฅผ ์œ„ํ•œ ๊ณ ๋ฆฌ ๋ฐœ์ง„๊ธฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์ฃผํŒŒ์ˆ˜ ํ•ฉ์„ฑ๊ธฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ์ •๋•๊ท .In this dissertation, major concerns in the clocking of modern serial links are discussed. As sub-rate, multi-standard architectures are becoming predominant, the conventional clocking methodology seems to necessitate innovation in terms of low-cost implementation. Frequency synthesis with active, inductor-less oscillators replacing LC counterparts are reviewed, and solutions for two major drawbacks are proposed. Each solution is verified by prototype chip design, giving a possibility that the inductor-less oscillator may become a proper candidate for future high-speed serial links. To mitigate the high flicker noise of a high-frequency ring oscillator (RO), a reference multiplication technique that effectively extends the bandwidth of the following all-digital phase-locked loop (ADPLL) is proposed. The technique avoids any jitter accumulation, generating a clean mid-frequency clock, overall achieving high jitter performance in conjunction with the ADPLL. Timing constraint for the proper reference multiplication is first analyzed to determine the calibration points that may correct the existent phase errors. The weight for each calibration point is updated by the proposed a priori probability-based least-mean-square (LMS) algorithm. To minimize the time required for the calibration, each gain for the weight update is adaptively varied by deducing a posteriori which error source dominates the others. The prototype chip is fabricated in a 40-nm CMOS technology, and its measurement results verify the low-jitter, high-frequency clock generation with fast calibration settling. The presented work achieves an rms jitter of 177/223 fs at 8/16-GHz output, consuming 12.1/17-mW power. As the second embodiment, an RO-based ADPLL with an analog technique that addresses the high supply sensitivity of the RO is presented. Unlike prior arts, the circuit for the proposed technique does not extort the RO voltage headroom, allowing high-frequency oscillation. Further, the performance given from the technique is robust over process, voltage, and temperature (PVT) variations, avoiding the use of additional calibration hardware. Lastly, a comprehensive analysis of phase noise contribution is conducted for the overall ADPLL, followed by circuit optimizations, to retain the low-jitter output. Implemented in a 40-nm CMOS technology, the frequency synthesizer achieves an rms jitter of 289 fs at 8 GHz output without any injected supply noise. Under a 20-mVrms white supply noise, the ADPLL suppresses supply-noise-induced jitter by -23.8 dB.๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์‹œ๋ฆฌ์–ผ ๋งํฌ์˜ ํด๋ฝํ‚น์— ๊ด€์—ฌ๋˜๋Š” ์ฃผ์š”ํ•œ ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•˜์—ฌ ๊ธฐ์ˆ ํ•œ๋‹ค. ์ค€์†๋„, ๋‹ค์ค‘ ํ‘œ์ค€ ๊ตฌ์กฐ๋“ค์ด ์ฑ„ํƒ๋˜๊ณ  ์žˆ๋Š” ์ถ”์„ธ์— ๋”ฐ๋ผ, ๊ธฐ์กด์˜ ํด๋ผํ‚น ๋ฐฉ๋ฒ•์€ ๋‚ฎ์€ ๋น„์šฉ์˜ ๊ตฌํ˜„์˜ ๊ด€์ ์—์„œ ์ƒˆ๋กœ์šด ํ˜์‹ ์„ ํ•„์š”๋กœ ํ•œ๋‹ค. LC ๊ณต์ง„๊ธฐ๋ฅผ ๋Œ€์‹ ํ•˜์—ฌ ๋Šฅ๋™ ์†Œ์ž ๋ฐœ์ง„๊ธฐ๋ฅผ ์‚ฌ์šฉํ•œ ์ฃผํŒŒ์ˆ˜ ํ•ฉ์„ฑ์— ๋Œ€ํ•˜์—ฌ ์•Œ์•„๋ณด๊ณ , ์ด์— ๋ฐœ์ƒํ•˜๋Š” ๋‘๊ฐ€์ง€ ์ฃผ์š” ๋ฌธ์ œ์ ๊ณผ ๊ฐ๊ฐ์— ๋Œ€ํ•œ ํ•ด๊ฒฐ ๋ฐฉ์•ˆ์„ ํƒ์ƒ‰ํ•œ๋‹ค. ๊ฐ ์ œ์•ˆ ๋ฐฉ๋ฒ•์„ ํ”„๋กœํ† ํƒ€์ž… ์นฉ์„ ํ†ตํ•ด ๊ทธ ํšจ์šฉ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ณ , ์ด์–ด์„œ ๋Šฅ๋™ ์†Œ์ž ๋ฐœ์ง„๊ธฐ๊ฐ€ ๋ฏธ๋ž˜์˜ ๊ณ ์† ์‹œ๋ฆฌ์–ผ ๋งํฌ์˜ ํด๋ฝํ‚น์— ์‚ฌ์šฉ๋  ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•ด ๊ฒ€ํ† ํ•œ๋‹ค. ์ฒซ๋ฒˆ์งธ ์‹œ์—ฐ์œผ๋กœ์จ, ๊ณ ์ฃผํŒŒ ๊ณ ๋ฆฌ ๋ฐœ์ง„๊ธฐ์˜ ๋†’์€ ํ”Œ๋ฆฌ์ปค ์žก์Œ์„ ์™„ํ™”์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๊ธฐ์ค€ ์‹ ํ˜ธ๋ฅผ ๋ฐฐ์ˆ˜ํ™”ํ•˜์—ฌ ๋’ท๋‹จ์˜ ์œ„์ƒ ๊ณ ์ • ๋ฃจํ”„์˜ ๋Œ€์—ญํญ์„ ํšจ๊ณผ์ ์œผ๋กœ ๊ทน๋Œ€ํ™” ์‹œํ‚ค๋Š” ํšŒ๋กœ ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ๊ธฐ์ˆ ์€ ์ง€ํ„ฐ๋ฅผ ๋ˆ„์  ์‹œํ‚ค์ง€ ์•Š์œผ๋ฉฐ ๋”ฐ๋ผ์„œ ๊นจ๋—ํ•œ ์ค‘๊ฐ„ ์ฃผํŒŒ์ˆ˜ ํด๋ฝ์„ ์ƒ์„ฑ์‹œ์ผœ ์œ„์ƒ ๊ณ ์ • ๋ฃจํ”„์™€ ํ•จ๊ป˜ ๋†’์€ ์„ฑ๋Šฅ์˜ ๊ณ ์ฃผํŒŒ ํด๋ฝ์„ ํ•ฉ์„ฑํ•œ๋‹ค. ๊ธฐ์ค€ ์‹ ํ˜ธ๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ๋ฐฐ์ˆ˜ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ํƒ€์ด๋ฐ ์กฐ๊ฑด๋“ค์„ ๋จผ์ € ๋ถ„์„ํ•˜์—ฌ ํƒ€์ด๋ฐ ์˜ค๋ฅ˜๋ฅผ ์ œ๊ฑฐํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ํŒŒ์•…ํ•œ๋‹ค. ๊ฐ ๊ต์ • ์ค‘๋Ÿ‰์€ ์—ฐ์—ญ์  ํ™•๋ฅ ์„ ๊ธฐ๋ฐ˜์œผ๋กœํ•œ LMS ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ๊ฐฑ์‹ ๋˜๋„๋ก ์„ค๊ณ„๋œ๋‹ค. ๊ต์ •์— ํ•„์š”ํ•œ ์‹œ๊ฐ„์„ ์ตœ์†Œํ™” ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๊ฐ ๊ต์ • ์ด๋“์€ ํƒ€์ด๋ฐ ์˜ค๋ฅ˜ ๊ทผ์›๋“ค์˜ ํฌ๊ธฐ๋ฅผ ๊ท€๋‚ฉ์ ์œผ๋กœ ์ถ”๋ก ํ•œ ๊ฐ’์„ ๋ฐ”ํƒ•์œผ๋กœ ์ง€์†์ ์œผ๋กœ ์ œ์–ด๋œ๋‹ค. 40-nm CMOS ๊ณต์ •์œผ๋กœ ๊ตฌํ˜„๋œ ํ”„๋กœํ† ํƒ€์ž… ์นฉ์˜ ์ธก์ •์„ ํ†ตํ•ด ์ €์†Œ์Œ, ๊ณ ์ฃผํŒŒ ํด๋ฝ์„ ๋น ๋ฅธ ๊ต์ • ์‹œ๊ฐ„์•ˆ์— ํ•ฉ์„ฑํ•ด ๋ƒ„์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Š” 177/223 fs์˜ rms ์ง€ํ„ฐ๋ฅผ ๊ฐ€์ง€๋Š” 8/16 GHz์˜ ํด๋ฝ์„ ์ถœ๋ ฅํ•œ๋‹ค. ๋‘๋ฒˆ์งธ ์‹œ์—ฐ์œผ๋กœ์จ, ๊ณ ๋ฆฌ ๋ฐœ์ง„๊ธฐ์˜ ๋†’์€ ์ „์› ๋…ธ์ด์ฆˆ ์˜์กด์„ฑ์„ ์™„ํ™”์‹œํ‚ค๋Š” ๊ธฐ์ˆ ์ด ํฌํ•จ๋œ ์ฃผํŒŒ์ˆ˜ ํ•ฉ์„ฑ๊ธฐ๊ฐ€ ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด๋Š” ๊ณ ๋ฆฌ ๋ฐœ์ง„๊ธฐ์˜ ์ „์•• ํ—ค๋“œ๋ฃธ์„ ๋ณด์กดํ•จ์œผ๋กœ์„œ ๊ณ ์ฃผํŒŒ ๋ฐœ์ง„์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ๋‚˜์•„๊ฐ€, ์ „์› ๋…ธ์ด์ฆˆ ๊ฐ์†Œ ์„ฑ๋Šฅ์€ ๊ณต์ •, ์ „์••, ์˜จ๋„ ๋ณ€๋™์— ๋Œ€ํ•˜์—ฌ ๋ฏผ๊ฐํ•˜์ง€ ์•Š์œผ๋ฉฐ, ๋”ฐ๋ผ์„œ ์ถ”๊ฐ€์ ์ธ ๊ต์ • ํšŒ๋กœ๋ฅผ ํ•„์š”๋กœ ํ•˜์ง€ ์•Š๋Š”๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์œ„์ƒ ๋…ธ์ด์ฆˆ์— ๋Œ€ํ•œ ํฌ๊ด„์  ๋ถ„์„๊ณผ ํšŒ๋กœ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•˜์—ฌ ์ฃผํŒŒ์ˆ˜ ํ•ฉ์„ฑ๊ธฐ์˜ ์ €์žก์Œ ์ถœ๋ ฅ์„ ๋ฐฉํ•ดํ•˜์ง€ ์•Š๋Š” ๋ฐฉ๋ฒ•์„ ๊ณ ์•ˆํ•˜์˜€๋‹ค. ํ•ด๋‹น ํ”„๋กœํ† ํƒ€์ž… ์นฉ์€ 40-nm CMOS ๊ณต์ •์œผ๋กœ ๊ตฌํ˜„๋˜์—ˆ์œผ๋ฉฐ, ์ „์› ๋…ธ์ด์ฆˆ๊ฐ€ ์ธ๊ฐ€๋˜์ง€ ์•Š์€ ์ƒํƒœ์—์„œ 289 fs์˜ rms ์ง€ํ„ฐ๋ฅผ ๊ฐ€์ง€๋Š” 8 GHz์˜ ํด๋ฝ์„ ์ถœ๋ ฅํ•œ๋‹ค. ๋˜ํ•œ, 20 mVrms์˜ ์ „์› ๋…ธ์ด์ฆˆ๊ฐ€ ์ธ๊ฐ€๋˜์—ˆ์„ ๋•Œ์— ์œ ๋„๋˜๋Š” ์ง€ํ„ฐ์˜ ์–‘์„ -23.8 dB ๋งŒํผ ์ค„์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.1 Introduction 1 1.1 Motivation 3 1.1.1 Clocking in High-Speed Serial Links 4 1.1.2 Multi-Phase, High-Frequency Clock Conversion 8 1.2 Dissertation Objectives 10 2 RO-Based High-Frequency Synthesis 12 2.1 Phase-Locked Loop Fundamentals 12 2.2 Toward All-Digital Regime 15 2.3 RO Design Challenges 21 2.3.1 Oscillator Phase Noise 21 2.3.2 Challenge 1: High Flicker Noise 23 2.3.3 Challenge 2: High Supply Noise Sensitivity 26 3 Filtering RO Noise 28 3.1 Introduction 28 3.2 Proposed Reference Octupler 34 3.2.1 Delay Constraint 34 3.2.2 Phase Error Calibration 38 3.2.3 Circuit Implementation 51 3.3 IL-ADPLL Implementation 55 3.4 Measurement Results 59 3.5 Summary 63 4 RO Supply Noise Compensation 69 4.1 Introduction 69 4.2 Proposed Analog Closed Loop for Supply Noise Compensation 72 4.2.1 Circuit Implementation 73 4.2.2 Frequency-Domain Analysis 76 4.2.3 Circuit Optimization 81 4.3 ADPLL Implementation 87 4.4 Measurement Results 90 4.5 Summary 98 5 Conclusions 99 A Notes on the 8REF 102 B Notes on the ACSC 105๋ฐ•

    A Low Noise Sub-Sampling PLL in Which Divider Noise Is Eliminated and PD-CP Noise Is not multiplied by N^2

    Get PDF
    This paper presents a 2.2-GHz low jitter sub-sampling based PLL. It uses a phase-detector/charge-pump (PD/CP)that sub-samples the VCO output with the reference clock. In contrast to what happens in a classical PLL, the PD/CP noise is not multiplied by N2 in this sub-sampling PLL, resulting in a low noise contribution from the PD/CP. Moreover, no frequency divider is needed in the locked state and hence divider noise and power can be eliminated. An added frequency locked loop guarantees correct frequency locking without degenerating jitter performance when in lock. The PLL is implemented in a standard 0.18- m CMOS process. It consumes 4.2 mA from a 1.8 V supply and occupies an active area of 0.4 X 0.45 m
    • โ€ฆ
    corecore