635 research outputs found

    A bagging SVM to learn from positive and unlabeled examples

    Full text link
    We consider the problem of learning a binary classifier from a training set of positive and unlabeled examples, both in the inductive and in the transductive setting. This problem, often referred to as \emph{PU learning}, differs from the standard supervised classification problem by the lack of negative examples in the training set. It corresponds to an ubiquitous situation in many applications such as information retrieval or gene ranking, when we have identified a set of data of interest sharing a particular property, and we wish to automatically retrieve additional data sharing the same property among a large and easily available pool of unlabeled data. We propose a conceptually simple method, akin to bagging, to approach both inductive and transductive PU learning problems, by converting them into series of supervised binary classification problems discriminating the known positive examples from random subsamples of the unlabeled set. We empirically demonstrate the relevance of the method on simulated and real data, where it performs at least as well as existing methods while being faster

    Sparsity-accuracy trade-off in MKL

    Full text link
    We empirically investigate the best trade-off between sparse and uniformly-weighted multiple kernel learning (MKL) using the elastic-net regularization on real and simulated datasets. We find that the best trade-off parameter depends not only on the sparsity of the true kernel-weight spectrum but also on the linear dependence among kernels and the number of samples.Comment: 8pages, 2 figure

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review

    Using Twitter to learn about the autism community

    Full text link
    Considering the raising socio-economic burden of autism spectrum disorder (ASD), timely and evidence-driven public policy decision making and communication of the latest guidelines pertaining to the treatment and management of the disorder is crucial. Yet evidence suggests that policy makers and medical practitioners do not always have a good understanding of the practices and relevant beliefs of ASD-afflicted individuals' carers who often follow questionable recommendations and adopt advice poorly supported by scientific data. The key goal of the present work is to explore the idea that Twitter, as a highly popular platform for information exchange, could be used as a data-mining source to learn about the population affected by ASD -- their behaviour, concerns, needs etc. To this end, using a large data set of over 11 million harvested tweets as the basis for our investigation, we describe a series of experiments which examine a range of linguistic and semantic aspects of messages posted by individuals interested in ASD. Our findings, the first of their nature in the published scientific literature, strongly motivate additional research on this topic and present a methodological basis for further work.Comment: Social Network Analysis and Mining, 201

    Completing Low-Rank Matrices with Corrupted Samples from Few Coefficients in General Basis

    Full text link
    Subspace recovery from corrupted and missing data is crucial for various applications in signal processing and information theory. To complete missing values and detect column corruptions, existing robust Matrix Completion (MC) methods mostly concentrate on recovering a low-rank matrix from few corrupted coefficients w.r.t. standard basis, which, however, does not apply to more general basis, e.g., Fourier basis. In this paper, we prove that the range space of an m×nm\times n matrix with rank rr can be exactly recovered from few coefficients w.r.t. general basis, though rr and the number of corrupted samples are both as high as O(min{m,n}/log3(m+n))O(\min\{m,n\}/\log^3 (m+n)). Our model covers previous ones as special cases, and robust MC can recover the intrinsic matrix with a higher rank. Moreover, we suggest a universal choice of the regularization parameter, which is λ=1/logn\lambda=1/\sqrt{\log n}. By our 2,1\ell_{2,1} filtering algorithm, which has theoretical guarantees, we can further reduce the computational cost of our model. As an application, we also find that the solutions to extended robust Low-Rank Representation and to our extended robust MC are mutually expressible, so both our theory and algorithm can be applied to the subspace clustering problem with missing values under certain conditions. Experiments verify our theories.Comment: To appear in IEEE Transactions on Information Theor
    corecore