1,167 research outputs found

    Visibly Linear Dynamic Logic

    Get PDF
    We introduce Visibly Linear Dynamic Logic (VLDL), which extends Linear Temporal Logic (LTL) by temporal operators that are guarded by visibly pushdown languages over finite words. In VLDL one can, e.g., express that a function resets a variable to its original value after its execution, even in the presence of an unbounded number of intermediate recursive calls. We prove that VLDL describes exactly the ω\omega-visibly pushdown languages. Thus it is strictly more expressive than LTL and able to express recursive properties of programs with unbounded call stacks. The main technical contribution of this work is a translation of VLDL into ω\omega-visibly pushdown automata of exponential size via one-way alternating jumping automata. This translation yields exponential-time algorithms for satisfiability, validity, and model checking. We also show that visibly pushdown games with VLDL winning conditions are solvable in triply-exponential time. We prove all these problems to be complete for their respective complexity classes.Comment: 25 Page

    Enriched MU-Calculi Module Checking

    Full text link
    The model checking problem for open systems has been intensively studied in the literature, for both finite-state (module checking) and infinite-state (pushdown module checking) systems, with respect to Ctl and Ctl*. In this paper, we further investigate this problem with respect to the \mu-calculus enriched with nominals and graded modalities (hybrid graded Mu-calculus), in both the finite-state and infinite-state settings. Using an automata-theoretic approach, we show that hybrid graded \mu-calculus module checking is solvable in exponential time, while hybrid graded \mu-calculus pushdown module checking is solvable in double-exponential time. These results are also tight since they match the known lower bounds for Ctl. We also investigate the module checking problem with respect to the hybrid graded \mu-calculus enriched with inverse programs (Fully enriched \mu-calculus): by showing a reduction from the domino problem, we show its undecidability. We conclude with a short overview of the model checking problem for the Fully enriched Mu-calculus and the fragments obtained by dropping at least one of the additional constructs

    Context-Bounded Analysis For Concurrent Programs With Dynamic Creation of Threads

    Full text link
    Context-bounded analysis has been shown to be both efficient and effective at finding bugs in concurrent programs. According to its original definition, context-bounded analysis explores all behaviors of a concurrent program up to some fixed number of context switches between threads. This definition is inadequate for programs that create threads dynamically because bounding the number of context switches in a computation also bounds the number of threads involved in the computation. In this paper, we propose a more general definition of context-bounded analysis useful for programs with dynamic thread creation. The idea is to bound the number of context switches for each thread instead of bounding the number of switches of all threads. We consider several variants based on this new definition, and we establish decidability and complexity results for the analysis induced by them

    Automata with Nested Pebbles Capture First-Order Logic with Transitive Closure

    Get PDF
    String languages recognizable in (deterministic) log-space are characterized either by two-way (deterministic) multi-head automata, or following Immerman, by first-order logic with (deterministic) transitive closure. Here we elaborate this result, and match the number of heads to the arity of the transitive closure. More precisely, first-order logic with k-ary deterministic transitive closure has the same power as deterministic automata walking on their input with k heads, additionally using a finite set of nested pebbles. This result is valid for strings, ordered trees, and in general for families of graphs having a fixed automaton that can be used to traverse the nodes of each of the graphs in the family. Other examples of such families are grids, toruses, and rectangular mazes. For nondeterministic automata, the logic is restricted to positive occurrences of transitive closure. The special case of k=1 for trees, shows that single-head deterministic tree-walking automata with nested pebbles are characterized by first-order logic with unary deterministic transitive closure. This refines our earlier result that placed these automata between first-order and monadic second-order logic on trees.Comment: Paper for Logical Methods in Computer Science, 27 pages, 1 figur

    Model Checking Probabilistic Pushdown Automata

    Get PDF
    We consider the model checking problem for probabilistic pushdown automata (pPDA) and properties expressible in various probabilistic logics. We start with properties that can be formulated as instances of a generalized random walk problem. We prove that both qualitative and quantitative model checking for this class of properties and pPDA is decidable. Then we show that model checking for the qualitative fragment of the logic PCTL and pPDA is also decidable. Moreover, we develop an error-tolerant model checking algorithm for PCTL and the subclass of stateless pPDA. Finally, we consider the class of omega-regular properties and show that both qualitative and quantitative model checking for pPDA is decidable

    DFAs and PFAs with Long Shortest Synchronizing Word Length

    Full text link
    It was conjectured by \v{C}ern\'y in 1964, that a synchronizing DFA on nn states always has a shortest synchronizing word of length at most (n−1)2(n-1)^2, and he gave a sequence of DFAs for which this bound is reached. Until now a full analysis of all DFAs reaching this bound was only given for n≀4n \leq 4, and with bounds on the number of symbols for n≀10n \leq 10. Here we give the full analysis for n≀6n \leq 6, without bounds on the number of symbols. For PFAs the bound is much higher. For n≀6n \leq 6 we do a similar analysis as for DFAs and find the maximal shortest synchronizing word lengths, exceeding (n−1)2(n-1)^2 for n=4,5,6n =4,5,6. For arbitrary n we give a construction of a PFA on three symbols with exponential shortest synchronizing word length, giving significantly better bounds than earlier exponential constructions. We give a transformation of this PFA to a PFA on two symbols keeping exponential shortest synchronizing word length, yielding a better bound than applying a similar known transformation.Comment: 16 pages, 2 figures source code adde
    • 

    corecore