35 research outputs found

    Upward planar drawings with two slopes

    Get PDF
    In an upward planar 2-slope drawing of a digraph, edges are drawn as straight-line segments in the upward direction without crossings using only two different slopes. We investigate whether a given upward planar digraph admits such a drawing and, if so, how to construct it. For the fixed embedding scenario, we give a simple characterisation and a linear-time construction by adopting algorithms from orthogonal drawings. For the variable embedding scenario, we describe a linear-time algorithm for single-source digraphs, a quartic-time algorithm for series-parallel digraphs, and a fixed-parameter tractable algorithm for general digraphs. For the latter two classes, we make use of SPQR-trees and the notion of upward spirality. As an application of this drawing style, we show how to draw an upward planar phylogenetic network with two slopes such that all leaves lie on a horizontal line

    A Note on Plus-Contacts, Rectangular Duals, and Box-Orthogonal Drawings

    Full text link
    A plus-contact representation of a planar graph GG is called cc-balanced if for every plus shape +v+_v, the number of other plus shapes incident to each arm of +v+_v is at most cΔ+O(1) c \Delta +O(1), where Δ\Delta is the maximum degree of GG. Although small values of cc have been achieved for a few subclasses of planar graphs (e.g., 22- and 33-trees), it is unknown whether cc-balanced representations with c<1c<1 exist for arbitrary planar graphs. In this paper we compute (1/2)(1/2)-balanced plus-contact representations for all planar graphs that admit a rectangular dual. Our result implies that any graph with a rectangular dual has a 1-bend box-orthogonal drawings such that for each vertex vv, the box representing vv is a square of side length deg(v)2+O(1)\frac{deg(v)}{2}+ O(1).Comment: A poster related to this research appeared at the 25th International Symposium on Graph Drawing & Network Visualization (GD 2017

    Planarity Variants for Directed Graphs

    Get PDF

    Level-Planar Drawings with Few Slopes

    Get PDF
    We introduce and study level-planar straight-line drawings with a fixed number of slopes. For proper level graphs (all edges connect vertices of adjacent levels), we give an ( log2^{2} / log log )-time algorithm that either finds such a drawing or determines that no such drawing exists. Moreover, we consider the partial drawing extension problem, where we seek to extend an immutable drawing of a subgraph to a drawing of the whole graph, and the simultaneous drawing problem, which asks about the existence of drawings of two graphs whose restrictions to their shared subgraph coincide. We present (4/3^{4/3} log )-time and (10/3^{10/3} log )-time algorithms for these respective problems on proper level-planar graphs. We complement these positive results by showing that testing whether non-proper level graphs admit level-planar drawings with slopes is NP-hard even in restricted cases

    Rectilinear Planarity of Partial 2-Trees

    Full text link
    A graph is rectilinear planar if it admits a planar orthogonal drawing without bends. While testing rectilinear planarity is NP-hard in general (Garg and Tamassia, 2001), it is a long-standing open problem to establish a tight upper bound on its complexity for partial 2-trees, i.e., graphs whose biconnected components are series-parallel. We describe a new O(n^2)-time algorithm to test rectilinear planarity of partial 2-trees, which improves over the current best bound of O(n^3 \log n) (Di Giacomo et al., 2022). Moreover, for partial 2-trees where no two parallel-components in a biconnected component share a pole, we are able to achieve optimal O(n)-time complexity. Our algorithms are based on an extensive study and a deeper understanding of the notion of orthogonal spirality, introduced several years ago (Di Battista et al, 1998) to describe how much an orthogonal drawing of a subgraph is rolled-up in an orthogonal drawing of the graph.Comment: arXiv admin note: substantial text overlap with arXiv:2110.00548 Appears in the Proceedings of the 30th International Symposium on Graph Drawing and Network Visualization (GD 2022

    Planare Graphen und ihre Dualgraphen auf Zylinderoberflächen

    Get PDF
    In this thesis, we investigates plane drawings of undirected and directed graphs on cylinder surfaces. In the case of undirected graphs, the vertices are positioned on a line that is parallel to the cylinder’s axis and the edge curves must not intersect this line. We show that a plane drawing is possible if and only if the graph is a double-ended queue (deque) graph, i. e., the vertices of the graph can be processed according to a linear order and the edges correspond to items in the deque inserted and removed at their end vertices. A surprising consequence resulting from these observations is that the deque characterizes planar graphs with a Hamiltonian path. This result extends the known characterization of planar graphs with a Hamiltonian cycle by two stacks. By these insights, we also obtain a new characterization of queue graphs and their duals. We also consider the complexity of deciding whether a graph is a deque graph and prove that it is NP-complete. By introducing a split operation, we obtain the splittable deque and show that it characterizes planarity. For the proof, we devise an algorithm that uses the splittable deque to test whether a rotation system is planar. In the case of directed graphs, we study upward plane drawings where the edge curves follow the direction of the cylinder’s axis (standing upward planarity; SUP) or they wind around the axis (rolling upward planarity; RUP). We characterize RUP graphs by means of their duals and show that RUP and SUP swap their roles when considering a graph and its dual. There is a physical interpretation underlying this characterization: A SUP graph is to its RUP dual graph as electric current passing through a conductor to the magnetic field surrounding the conductor. Whereas testing whether a graph is RUP is NP-hard in general [Bra14], for directed graphs without sources and sink, we develop a linear-time recognition algorithm that is based on our dual graph characterization of RUP graphs.Die Arbeit beschäftigt sich mit planaren Zeichnungen ungerichteter und gerichteter Graphen auf Zylinderoberflächen. Im ungerichteten Fall werden Zeichnungen betrachtet, bei denen die Knoten auf einer Linie parallel zur Zylinderachse positioniert werden und die Kanten diese Linie nicht schneiden dürfen. Es kann gezeigt werden, dass eine planare Zeichnung genau dann möglich ist, wenn die Kanten des Graphen in einer double-ended queue (Deque) verarbeitet werden können. Ebenso lassen sich dadurch Queue, Stack und Doppelstack charakterisieren. Eine überraschende Konsequenz aus diesen Erkenntnissen ist, dass die Deque genau die planaren Graphen mit Hamiltonpfad charakterisiert. Dies erweitert die bereits bekannte Charakterisierung planarer Graphen mit Hamiltonkreis durch den Doppelstack. Im gerichteten Fall müssen die Kantenkurven entweder in Richtung der Zylinderachse verlaufen (SUP-Graphen) oder sich um die Achse herumbewegen (RUP-Graphen). Die Arbeit charakterisiert RUP-Graphen und zeigt, dass RUP und SUP ihre Rollen tauschen, wenn man Graph und Dualgraph betrachtet. Der SUP-Graph verhält sich dabei zum RUP-Graphen wie elektrischer Strom durch einen Leiter zum induzierten Magnetfeld. Ausgehend von dieser Charakterisierung ist es möglich einen Linearzeit-Algorithmus zu entwickeln, der entscheidet ob ein gerichteter Graph ohne Quellen und Senken ein RUP-Graph ist, während der allgemeine Fall NP-hart ist [Bra14]

    Kreisplanarität von Level-Graphen

    Get PDF
    In this dissertation we generalise the notion of level planar graphs in two directions: track planarity and radial planarity. Our main results are linear time algorithms both for the planarity test and for the computation of an embedding, and thus a drawing. Our algorithms use and generalise PQ-trees, which are a data structure for efficient planarity tests.In dieser Arbeit wird der Begriff Level-Planarität von Graphen auf zwei Arten erweitert: Spur-Planarität und radiale Level-Planarität. Die Hauptergebnisse sind Linearzeitalgorithmen zum Testen dieser Arten von Planarität und zur Erstellung einer entsprechenden Einbettung und somit einer Zeichnung. Die Algorithmen verwenden und generalisieren PQ-Bäume, eine bei effizienten Planaritätstests verwendete Datenstruktur
    corecore