5,068 research outputs found

    Continuation for thin film hydrodynamics and related scalar problems

    Full text link
    This chapter illustrates how to apply continuation techniques in the analysis of a particular class of nonlinear kinetic equations that describe the time evolution through transport equations for a single scalar field like a densities or interface profiles of various types. We first systematically introduce these equations as gradient dynamics combining mass-conserving and nonmass-conserving fluxes followed by a discussion of nonvariational amendmends and a brief introduction to their analysis by numerical continuation. The approach is first applied to a number of common examples of variational equations, namely, Allen-Cahn- and Cahn-Hilliard-type equations including certain thin-film equations for partially wetting liquids on homogeneous and heterogeneous substrates as well as Swift-Hohenberg and Phase-Field-Crystal equations. Second we consider nonvariational examples as the Kuramoto-Sivashinsky equation, convective Allen-Cahn and Cahn-Hilliard equations and thin-film equations describing stationary sliding drops and a transversal front instability in a dip-coating. Through the different examples we illustrate how to employ the numerical tools provided by the packages auto07p and pde2path to determine steady, stationary and time-periodic solutions in one and two dimensions and the resulting bifurcation diagrams. The incorporation of boundary conditions and integral side conditions is also discussed as well as problem-specific implementation issues

    Nonlinear dynamics of waves and modulated waves in 1D thermocapillary flows. I: General presentation and periodic solutions

    Full text link
    We present experimental results on hydrothermal traveling-waves dynamics in long and narrow 1D channels. The onset of primary traveling-wave patterns is briefly presented for different fluid heights and for annular or bounded channels, i.e., within periodic or non-periodic boundary conditions. For periodic boundary conditions, by increasing the control parameter or changing the discrete mean-wavenumber of the waves, we produce modulated waves patterns. These patterns range from stable periodic phase-solutions, due to supercritical Eckhaus instability, to spatio-temporal defect-chaos involving traveling holes and/or counter-propagating-waves competition, i.e., traveling sources and sinks. The transition from non-linearly saturated Eckhaus modulations to transient pattern-breaks by traveling holes and spatio-temporal defects is documented. Our observations are presented in the framework of coupled complex Ginzburg-Landau equations with additional fourth and fifth order terms which account for the reflection symmetry breaking at high wave-amplitude far from onset. The second part of this paper (nlin.PS/0208030) extends this study to spatially non-periodic patterns observed in both annular and bounded channel.Comment: 45 pages, 21 figures (elsart.cls + AMS extensions). Accepted in Physica D. See also companion paper "Nonlinear dynamics of waves and modulated waves in 1D thermocapillary flows. II: Convective/absolute transitions" (nlin.PS/0208030). A version with high resolution figures is available on N.G. web pag

    Chaos assisted tunnelling with cold atoms

    Full text link
    In the context of quantum chaos, both theory and numerical analysis predict large fluctuations of the tunnelling transition probabilities when irregular dynamics is present at the classical level. We consider here the non-dissipative quantum evolution of cold atoms trapped in a time-dependent modulated periodic potential generated by two laser beams. We give some precise guidelines for the observation of chaos assisted tunnelling between invariant phase space structures paired by time-reversal symmetry.Comment: submitted to Phys. Rev. E ; 16 pages, 13 figures; figures of better quality can be found at http://www.phys.univ-tours.fr/~mouchet

    Evolution of wave packets in quasi-1D and 1D random media: diffusion versus localization

    Full text link
    We study numerically the evolution of wavepackets in quasi one-dimensional random systems described by a tight-binding Hamiltonian with long-range random interactions. Results are presented for the scaling properties of the width of packets in three time regimes: ballistic, diffusive and localized. Particular attention is given to the fluctuations of packet widths in both the diffusive and localized regime. Scaling properties of the steady-state distribution are also analyzed and compared with theoretical expression borrowed from one-dimensional Anderson theory. Analogies and differences with the kicked rotator model and the one-dimensional localization are discussed.Comment: 32 pages, LaTex, 11 PostScript figure

    Nonlinear Dynamics of Particles Excited by an Electric Curtain

    Full text link
    The use of the electric curtain (EC) has been proposed for manipulation and control of particles in various applications. The EC studied in this paper is called the 2-phase EC, which consists of a series of long parallel electrodes embedded in a thin dielectric surface. The EC is driven by an oscillating electric potential of a sinusoidal form where the phase difference of the electric potential between neighboring electrodes is 180 degrees. We investigate the one- and two-dimensional nonlinear dynamics of a particle in an EC field. The form of the dimensionless equations of motion is codimension two, where the dimensionless control parameters are the interaction amplitude (AA) and damping coefficient (β\beta). Our focus on the one-dimensional EC is primarily on a case of fixed β\beta and relatively small AA, which is characteristic of typical experimental conditions. We study the nonlinear behaviors of the one-dimensional EC through the analysis of bifurcations of fixed points. We analyze these bifurcations by using Floquet theory to determine the stability of the limit cycles associated with the fixed points in the Poincar\'e sections. Some of the bifurcations lead to chaotic trajectories where we then determine the strength of chaos in phase space by calculating the largest Lyapunov exponent. In the study of the two-dimensional EC we independently look at bifurcation diagrams of variations in AA with fixed β\beta and variations in β\beta with fixed AA. Under certain values of β\beta and AA, we find that no stable trajectories above the surface exists; such chaotic trajectories are described by a chaotic attractor, for which the the largest Lyapunov exponent is found. We show the well-known stable oscillations between two electrodes come into existence for variations in AA and the transitions between several distinct regimes of stable motion for variations in β\beta

    Dynamical tunnelling with ultracold atoms in magnetic microtraps

    Get PDF
    The study of dynamical tunnelling in a periodically driven anharmonic potential probes the quantum-classical transition via the experimental control of the effective Planck's constant for the system. In this paper we consider the prospects for observing dynamical tunnelling with ultracold atoms in magnetic microtraps on atom chips. We outline the driven anharmonic potentials that are possible using standard magnetic traps, and find the Floquet spectrum for one of these as a function of the potential strength, modulation, and effective Planck's constant. We develop an integrable approximation to the non-integrable Hamiltonian and find that it can explain the behaviour of the tunnelling rate as a function of the effective Planck's constant in the regular region of parameter space. In the chaotic region we compare our results with the predictions of models that describe chaos-assisted tunnelling. Finally we examine the practicality of performing these experiments in the laboratory with Bose-Einstein condensates.Comment: V1: 12 pages, 10 figures. V2: 14 pages, 12 figures, significantly updated in response to referee report. Some figures are lower quality to reduce file sizes, please contact submitter for high quality versions. V3: Introduction rewritten, but mostly unchanged; updated to published versio

    Signatures of chaotic tunnelling

    Full text link
    Recent experiments with cold atoms provide a significant step toward a better understanding of tunnelling when irregular dynamics is present at the classical level. In this paper, we lay out numerical studies which shed light on the previous experiments, help to clarify the underlying physics and have the ambition to be guidelines for future experiments.Comment: 11 pages, 9 figures, submitted to Phys. Rev. E. Figures of better quality can be found at http://www.phys.univ-tours.fr/~mouchet

    An introduction to the Ginzburg-Landau theory of phase transitions and nonequilibrium patterns

    Full text link
    This paper presents an introduction to phase transitions and critical phenomena on the one hand, and nonequilibrium patterns on the other, using the Ginzburg-Landau theory as a unified language. In the first part, mean-field theory is presented, for both statics and dynamics, and its validity tested self-consistently. As is well known, the mean-field approximation breaks down below four spatial dimensions, where it can be replaced by a scaling phenomenology. The Ginzburg-Landau formalism can then be used to justify the phenomenological theory using the renormalization group, which elucidates the physical and mathematical mechanism for universality. In the second part of the paper it is shown how near pattern forming linear instabilities of dynamical systems, a formally similar Ginzburg-Landau theory can be derived for nonequilibrium macroscopic phenomena. The real and complex Ginzburg-Landau equations thus obtained yield nontrivial solutions of the original dynamical system, valid near the linear instability. Examples of such solutions are plane waves, defects such as dislocations or spirals, and states of temporal or spatiotemporal (extensive) chaos
    • …
    corecore