23 research outputs found

    USING VCOS AS RF MEASURING DEVICES

    Get PDF
    This thesis presents an alternative way to test the amount of energy harvested by an antenna. Accurately measuring the amount of energy an antenna harvests is a challenge. The test equipment that touches the antenna can greatly affect the results of the test. Using a VCO to measure an antenna's harvested power enables accuracy and prevents the need to attach testing equipment. The VCO is powered by a harvesting antenna. The frequency produced is then output to a transmitting antenna. The output frequency of the VCO can easily be determined and then used to look up the power from the characteristics of the VCO. A background study of types of VCOs, and VCOs available on the market will also be included in this thesis. Finally the experiment setups and results will be presented

    Low-power transceiver design for mobile wireless chemical biological sensors

    Get PDF
    The design of a smart integrated chemical sensor system that will enhance sensor performance and compatibility to Ad hoc network architecture remains a challenge. This work involves the design of a Transceiver for a mobile chemical sensor. The transceiver design integrates all building blocks on-chip, including a low-noise amplifier with an input-matching network, a Voltage Controlled Oscillator with injection locking, Gilbert cell mixers, and a Class E Power amplifier making it as a single-chip transceiver. This proposed low power 2GHz transceiver has been designed in TSMC 0.35~lm CMOS process using Cadence electronic design automation tools. Post layout HSPICE simulation indicates that Design meets the separation of noise levels by 52dB and 42dB in transmitter and receiver respectively with power consumption of 56 mW and 38 mW in transmit and receive mode

    Digital PLL for ISM applications

    Get PDF
    In modern transceivers, a low power PLL is a key block. It is known that with the evolution of technology, lower power and high performance circuitry is a challenging demand. In this thesis, a low power PLL is developed in order not to exceed 2mW of total power consumption. It is composed by small area blocks which is one of the main demands. The blocks that compose the PLL are widely abridged and the final solution is shown, showing why it is employed. The VCO block is a Current-Starved Ring Oscillator with a frequency range from 400MHz to 1.5GHz, with a 300μW to approximately 660μW power consumption. The divider is composed by six TSPC D Flip-Flop in series, forming a divide-by-64 divider. The Phase-Detector is a Dual D Flip-Flop detector with a charge pump. The PLL has less than a 2us lock time and presents a output oscillation of 1GHz, as expected. It also has a total power consumption of 1.3mW, therefore fulfilling all the specifications. The main contributions of this thesis are that this PLL can be applied in ISM applications due to its covering frequency range and low cost 130nm CMOS technology

    Design Techniques of Energy Efficient PLL for Enhanced Noise and Lock Performance

    Get PDF
    Phase locked loops(PLLs)are vital building blocks of communication sys-tems whose performance dictates the quality of communication.The design of PLL to o_er superior performance is the prime objective of this research.It is desirable for the PLL to have fast locking,low noise,low reference spur,wide lock range,low power consumption consuming less silicon area.To achieve these performance parameters simultaneously in a PLL being a challenging task is taken up as a scope of the present work.A comprehensive study of the performance linked PLL components along with their design challenges is made in this report.The phase noise which is directly related to the dead zone of the PLL is minimized using an e_cient phase frequency detector(PFD)in this thesis.Here a voltage variable delay element is inserted in the reset path of the PFD to reduce the dead zone.An adaptive PFD architecture is also proposed to have a low noise and fast PLL simultaneously.In this work,before locking a fast PFD and in the locked state a low noise PFD operates to dictate the phase di_erence of the reference and feedback signals.To reduce the reference spur,a novel charge pump architecture is proposed which eventually reduces the lock time up to a great extent.In this charge pump a single current source is employed to reduce the output current mis-match and transmission gates are used to reduce the non ideal e_ects.Besides this,the fabrication process variations have a predominant e_ect on the PLL performance,which is directly linked to the locking capability.This necessitates a manufacturing process variation tolerant design of the PLL.In this work an e_cient multi-objective optimization method is also applied to at-tain multiple optimal performance objectives.The major performances under consideration are lock time,phase noise,lock range and power consumption

    Novel Current-Mode Sensor Interfacing and Radio Blocks for Cell Culture Monitoring

    No full text
    Since 2004 Imperial College has been developing the world’s first application-specific instrumentation aiming at the on-line, in-situ, physiochemical monitoring of adult stem cell cultures. That effort is internationally known as the ‘Intelligent Stem Cell Culture Systems’ (ISCCS) project. The ISCCS platform is formed by the functional integration of biosensors, interfacing electronics and bioreactors. Contrary to the PCB-level ISCCS platform the work presented in this thesis relates to the realization of a miniaturized cell culture monitoring platform. Specifically, this thesis details the synthesis and fabrication of pivotal VLSI circuit blocks suitable for the construction of a miniaturized microelectronic cell monitoring platform. The thesis is composed of two main parts. The first part details the design and operation of a two-stage current-input currentoutput topology suitable for three-electrode amperometric sensor measurements. The first stage is a CMOS-dual rail-class AB-current conveyor providing a low impedancevirtual ground node for a current input. The second stage is a novel hyperbolic-sinebased externally-linear internally-non-linear current amplification stage. This stage bases its operation upon the compressive sinh−1 conversion of the interfaced current to an intermediate auxiliary voltage and the subsequent sinh expansion of the same voltage. The proposed novel topology has been simulated for current-gain values ranging from 10 to 1000 using the parameters of the commercially available 0.8μm AMS CMOS process. Measured results from a chip fabricated in the same technology are also reported. The proposed interfacing/amplification architecture consumes 0.88-95μW. The second part describes the design and practical evaluation of a 13.56MHz frequency shift keying (FSK) short-range (5cm) telemetry link suitable for the monitoring of incubated cultures. Prior to the design of the full FSK radio system, a pair of 13.56MHz antennae are characterized experimentally. The experimental S-parameter-value determination of the 13.56MHz wireless link is incorporated into the Cadence Design Framework allowing a high fidelity simulation of the reported FSK radio. The transmitter of the proposed system is a novel multi-tapped seven-stage ring-oscillator-based VCO whereas the core of the receiver is an appropriately modified phase locked loop (PLL). Simulated and measured results from a 0.8μm CMOS technology chip are reported

    Design and realization of a 2.4 Gbps - 3.2 Gbps clock and data recovery circuit

    Get PDF
    This thesis presents the design, verification, system integration and the physical realization of a high-speed monolithic phase-locked loop (PLL) based clock and data recovery (CDR) circuit. The architecture of the CDR has been realized as a two-loop structure consisting of coarse and fine loops, each of which is capable of processing the incoming low-speed reference clock and high-speed random data. At start up, the coarse loop provides fast locking to the system frequency with the help of the reference clock. After the VCO clock reaches a proximity of system frequency , the LOCK signal is generated and the coarse loop is tumed off, while the fine loop is tumed on. Fine loop tracks the phase of the generated clock with respect to the data and aligns the VCO clock such that its rising edge is in the middle of data eye. The speed and symmetry of sub-blocks in fine loop are extremely important, since all asymmetric charging effects, skew and setup/hold problems in this loop translate into a static phase error at the clock output. The entire circuit architecture is built with a special low-voltage circuit design technique. All analogue as well as digital sub-blocks of the CDR architecture presented in this work operate on a differential signalling, which significantly makes the design more complex while ensuring a more robust perforrnance. Other important features of this CDR include small area, single power supply, low power consumption, capability to operate at very high data rates, and the ability to handle between 2.4 Gbps and 3.2 Gbps data rate. The CDR architecture was realized using a conventional 0.13-mikrometer digital CMOS technology (Foundry: UMC), which ensures a lower overall cost and better portability for the design. The CDR architecture presented in this work is capable of operating at sampling frequencies of up to 3.2 GHz, and still can achieve the robust phase alignrnent. The entire circuit is designed with single 1.2 V power supply .The overall power consumption is estimated as 18.6 mW at 3.2 GHz sampling rate. The overall silicon area of the CDR is approximately 0.3 mm^2 with its internal loop filter capacitors. Other researchers have reported similar featured PLL-based clock and data recovery circuits in terms of operating data rate, architecture and jitter performance. To the best of our knowledge, this clock recovery uses the advantage of being the first high-speed CDR designed in CMOS 0.13 mikrometer technology with the superiority on power consumption and area considerations among others. The CDR architecture presented in this thesis is intended, as a state-of-the-art clock recovery for high-speed applications such as optical communications or high bandwidth serial wireline communication needs. It can be used either as a stand-alone single-chip unit, or as an embedded intellectual property (IP) block that can be integrated with other modules on chip

    A Fully Integrated Multi-Band Multi-Output Synthesizer with Wide-Locking-Range 1/3 Injection Locked Divider Utilizing Self-Injection Technique for Multi-Band Microwave Systems

    Get PDF
    This dissertation reports the development of a new multi-band multi-output synthesizer, 1/2 dual-injection locked divider, 1/3 injection-locked divider with phase-tuning, and 1/3 injection-locked divider with self-injection using 0.18-micrometer CMOS technology. The synthesizer is used for a multi-band multi-polarization radar system operating in the K- and Ka-band. The synthesizer is a fully integrated concurrent tri-band, tri-output phase-locked loop (PLL) with divide-by-3 injection locked frequency divider (ILFD). A new locking mechanism for the ILFD based on the gain control of the feedback amplifier is utilized to enable tunable and enhanced locking range which facilitates the attainment of stable locking states. The PLL has three concurrent multiband outputs: 3.47-4.313 GHz, 6.94-8.626 GHz and 19.44-21.42-GHz. High second-order harmonic suppression of 62.2 dBc is achieved without using a filter through optimization of the balance between the differential outputs. The proposed technique enables the use of an integer-N architecture for multi-band and microwave systems, while maintaining the benefit of the integer-N architecture; an optimal performance in area and power consumption. The 1/2 dual-ILFD with wide locking range and low-power consumption is analyzed and designed together with a divide-by-2 current mode logic (CML) divider. The 1/2 dual-ILFD enhances the locking range with low-power consumption through optimized load quality factor (QL) and output current amplitude (iOSC) simultaneously. The 1/2 dual-ILFD achieves a locking range of 692 MHz between 7.512 and 8.204 GHz. The new 1/2 dual-ILFD is especially attractive for microwave phase-locked loops and frequency synthesizers requiring low power and wide locking range. The 3.5-GHz divide-by-3 (1/3) ILFD consists of an internal 10.5-GHz Voltage Controlled Oscillator (VCO) functioning as an injection source, 1/3 ILFD core, and output inverter buffer. A phase tuner implemented on an asymmetric inductor is proposed to increase the locking range. The other divide-by-3 ILFD utilizes self-injection technique. The self-injection technique substantially enhances the locking range and phase noise, and reduces the minimum power of the injection signal needed for the 1/3 ILFD. The locking range is increased by 47.8 % and the phase noise is reduced by 14.77 dBc/Hz at 1-MHz offset

    Design and modelling of clock and data recovery integrated circuit in 130 nm CMOS technology for 10 Gb/s serial data communications

    Get PDF
    This thesis describes the design and implementation of a fully monolithic 10 Gb/s phase and frequency-locked loop based clock and data recovery (PFLL-CDR) integrated circuit, as well as the Verilog-A modeling of an asynchronous serial link based chip to chip communication system incorporating the proposed concept. The proposed design was implemented and fabricated using the 130 nm CMOS technology offered by UMC (United Microelectronics Corporation). Different PLL-based CDR circuits topologies were investigated in terms of architecture and speed. Based on the investigation, we proposed a new concept of quarter-rate (i.e. the clocking speed in the circuit is 2.5 GHz for 10 Gb/s data rate) and dual-loop topology which consists of phase-locked and frequency-locked loop. The frequency-locked loop (FLL) operates independently from the phase-locked loop (PLL), and has a highly-desired feature that once the proper frequency has been acquired, the FLL is automatically disabled and the PLL will take over to adjust the clock edges approximately in the middle of the incoming data bits for proper sampling. Another important feature of the proposed quarter-rate concept is the inherent 1-to-4 demultiplexing of the input serial data stream. A new quarter-rate phase detector based on the non-linear early-late phase detector concept has been used to achieve the multi-Giga bit/s speed and to eliminate the need of the front-end data pre-processing (edge detecting) units usually associated with the conventional CDR circuits. An eight-stage differential ring oscillator running at 2.5 GHz frequency center was used for the voltage-controlled oscillator (VCO) to generate low-jitter multi-phase clock signals. The transistor level simulation results demonstrated excellent performances in term of locking speed and power consumption. In order to verify the accuracy of the proposed quarter-rate concept, a clockless asynchronous serial link incorporating the proposed concept and communicating two chips at 10 Gb/s has been modelled at gate level using the Verilog-A language and time-domain simulated

    A Nano-Power Voltage-Controlled Oscillator Design for RFID Applications

    Get PDF
    Passive RFID transponder is a tiny device that has unique ID information for communication with RFID readers and relies on the reader as a source of power supply. The main components of a typical transponder IC include antenna, analog front-end circuit and baseband processor, where the system clock is provided by a local oscillator. One of the biggest challenges for the oscillator is to ensure the lowest possible power consumption for passive RFID applications. A nano-power VCO capable of functioning as a local oscillator for the transponders is obtained by biasing the delay cells to operate in weak inversion region. Further power reduction is achieved by transistor sizing. Designed in a 90-nm CMOS technology, the proposed circuit oscillates with a power supply of 0.3V with frequency tuning characteristics and consumes only 24nW. The center frequency is 5.12MHz and the phase noise is -80.43 dBc/Hz at 10KHz offset

    A wideband frequency synthesizer for built-in self testing of analog integrated circuits

    Get PDF
    The cost to test chips has risen tremendously. Additionally, the process for testing all functionalities of both analog and digital part is far from simple. One attractive option is moving some or all of the testing functions onto the chip itself leading to the use of built-in self-tests (BISTs). The frequency generator or frequency synthesizer is a key element of the BIST. It generates the clock frequencies needed for testing. A wide-band frequency synthesizer is designed in the project. The architecture of a PLL is analyzed as well as the modifications carried out. The modified structure has three blocks: basic PLL based frequency synthesizer, frequency down-converter, and output selector. Each of these blocks is analyzed and designed. This frequency synthesizer system overcomes challenges faced by the traditional PLL based frequency synthesizer
    corecore