66 research outputs found

    Dynamic Wireless QoS Analysis for Real-Time Control in URLLC

    Get PDF
    One of the major goals of ultra-reliable and low-latency communication (URLLC) is to enable real-time wireless control systems. However, it is challenging to use URLLC throughout the control process since a huge amount of wireless resource is needed to maintain the rigorous quality-of-service (QoS) in URLLC, i.e, ultra reliability and low latency. In this paper, our goal is to discuss that whether the extreme high QoS in URLLC leads to better control performance than low QoS during the control process. This is expected to provide a guideline on the usage of the URLLC throughout the control process dynamically. Specifically, we first investigate the relationship between the URLLC QoS and control performance. Then, we discuss the effect of different communication QoS on the control performance. Our results show that the rigorous QoS in URLLC and a low QoS can be used dynamically throughout the control process with high system performance

    Метод оцінки часу затримки в процесі потокового мовлення

    Get PDF
    Розглянута задача мінімізації затримки медіаконтенту при онлайн-трансляції. Об’єктом дослідження є медіасерверні платформи, що використовуються для організації онлайн-трансляцій медіаконтенту. Метою роботи є дослідження часу затримки при доставці медіаконтенту в процесі онлайн-трансляції. В процесі проведення експериментів встановлено, що найбільші витрати часу на доставку зумовлені процесом обробки потоку в медіасервері. Затримка в медіасервері виникає за рахунок перетворень сигналу. Проаналізовано найбільш поширені на ринку медіапослуг медасервери, які дозволяють організувати онлайнтрансляцію на регіональному рівні. Це Ant Media Server 1.7.2, MistServer 2.14.1, Nimble Streamer Server 3.5.4, Red5 1.1.1,Wowza Streaming Engine 4.7. Запропоновано методику оцінки часу затримки доставки медіаконтенту в мережах потокового мовлення. Розроблена методика надає змогу визначити як загальний час затримки, так і його складові на кожному з етапів доставки

    PERFORMANCE OF UPLINK-NOMA WITH USER PAIRING AND DATA RATE-BASED POWER SCHEME

    Get PDF
    This paper analyzes a performance of uplink power-domain non-orthogonal multiple access (NOMA) system with 2K users in which a resource allocation is taken into consideration. Since the power allocation and user pairing are tightly intertwined, they are considered as a hybrid issue. Accordingly, High-High/High-Low user pairing process precedes date rate-based power allocation. Derived closed-form expressions for the outage probabilities and the sum data rate for uplink power-domain NOMA system over a composite Fisher-Snedecor (F) fading channel are used for an extensive performance evaluation. The impact of different fading/shadowing channel conditions, various users’ positions and their number on the performance metrics is examined. Presented results have high level of generality since the F fading model provides accurate characterization of the multipath/shadowing conditions in numerous communication scenarios of interest

    Upgrading SIM–OFDM Using a Threshold for Correct Operation with Analytical Proofs

    Get PDF
    A new upgrade to the SIM–OFDM is suggested to solve a critical problem that crashes the system even over noiseless channel. This problem is the interference of the zeros at the IFFT output with the BOOK\u27s zeros that confuses the receiver during demodulation which leads to BER accumulation. The suggested solution is to use a threshold to differentiate the data carried by the BOOK from the IFFT\u27s symbols. The new system is called Threshold SIM–OFDM (TSIM–OFDM). The mathematical analysis of TSIM–OFDM proves it operates normally and meets the theoretical bounds. The TSIM–OFDM preserves the probability of 1 equal to 1/2. This preservation comes from the direct connection of the ON/OFF switching bits to the subcarrier which overrides the majority condition. This new switching technique simplifies the system operation resulting in higher transmission speed and increased spectral and power efficiency. A simple approach to derive the BER for the SIM–OFDM is presented which proves that the SIM–OFDM will never reach zero BER level unlike the TSIM–OFDM. The simulation results show that the TSIM–OFDM BER reaches zero level and the output power is almost half of the OFDM. Adding the threshold will increase the transmitted power slightly and tends to decrease with the increase of IFFT length

    Outage and throughput performance of cognitive radio based power domain based multiple access

    Get PDF
    This paper considers power domain based multiple access (PDMA) in cognitive radio network to serve numerous users who intend to multiple access to core network. In particular, we investigate the effect of signal combination scheme equipped at PDMA end-users as existence of direct link and relay link. This system model using relay scheme provides performance improvement on the outage probability of two PDMA end-users. We first propose a simple scheme of fixed power allocation to PDMA users who exhibit performance gap and fairness. Inspired by PDMA strategy, we then find signal to noise ratio (SNR) to detect separated signal for each user. In addition, the exact expressions of outage probability are derived in assumption that receiver can cancel out the interference completely with successive interference cancellation (SIC). By exploiting theoretical and simulation results, both considered combination schemes (Maximal Ratio Combining (MRC) and Selection Combining (SC) can achieve improved performance of two PDMA users significantly

    5G Energy Efficiency Overview

    Get PDF
    It is a critical requirement for the future of 5G communication networks to provide high speed and significantly reduce network energy consumption. In the Fifth Generation (5G), wireless cellular networks, smartphone battery efficiency, and optimal utilization of power have become a matter of utmost importance. Energy-efficient networks along with an energy-saving strategy in mobile devices play a vital role in the mobile revolution. The goal of energy efficiency, apart from its ecological value, is also associated with the reduction of operational expenses for mobile network operators, as well as with greater customer satisfaction thanks to increased battery life. Battery and power are an area of significant challenges considering that smartphones are nowadays equipped with advanced technological network features and interfaces. These features require a lot of simultaneous power to make decisions and to transfer information between devices and networks to provide the best user experience. Furthermore, to meet the demands of increased data capacity, data rate, and to provide the best quality of service, there is a need to adopt energy-efficient architectures. The new strategies should not only focus on wireless base stations, which consumes most of the power, but it should also take into consideration the other power consumption elements for future mobile communication networks, including User Equipment (UE). In this paper, we do an overview of power consumption and improvements made so far on the networks and user equipment side and provide our proposals on how to overcome these power- European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431 January 2021 edition Vol.17, No.3 www.eujournal.org 316 hungry issues on the newly 5G systems

    Optimization of Mixed Numerology Profiles for 5G Wireless Communication Scenarios

    Get PDF
    The management of 5G resources is a demanding task, requiring proper planning of operating numerology indexes and spectrum allocation according to current traffic needs. In addition, any reconfigurations to adapt to the current traffic pattern should be minimized to reduce signaling overhead. In this article, the pre-planning of numerology profiles is proposed to address this problem, and a mathematical optimization model for their planning is developed. The idea is to explore requirements and impairments usually present in a given wireless communication scenario to build numerology profiles and then adopt one of the profiles according to the current users/traffic pattern. The model allows the optimization of mixed numerologies in future 5G systems under any wireless communication scenario, with specific service requirements and impairments, and under any traffic scenario. Results show that, depending on the granularity of the profiles, the proposed optimization model is able to provide satisfaction levels of 60–100%, whereas a non-optimized approach provides 40–65%, while minimizing the total number of numerology indexes in operation.Competitiveness and Internationalization Operational Programme (COMPETE 2020), the Regional Operational Program of the Algarve (2020), and Fundação para a Ciência e Tecnologia; i-Five: Extensão do acesso de espectro dinâmico para rádio 5G, POCI-01-0145-FEDER-030500. This work is also supported by Fundação para a ciência e Tecnologia within CEOT (Center for Electronic, Optoelectronic and Telecommunications) and the UID/MULTI/00631/2020 projectinfo:eu-repo/semantics/publishedVersio

    Mobile Network Access Points using Self Organising Drone Constellations

    Get PDF
    Nowadays with artificial intelligence and automation requires much remote sensing. Sensors can be fixed or mobile. Mobile sensor networks are easy to deploy in a new location however, one of the challenges is figuring out how to interconnect these mobile sensors and link them to a core network. This paper proposes a technique of setting a mobile network that miniature base stations or access points be carried by drones in an automatically structured constellation to enable network connectivity between sensors. The paper presents a swing and adjusting technique to determine the ideal deployment of mobile base stations carried by drones, one base station per drone to connect as many sensors as possible without having prior information on sensor distribution. Swing and adjusting, coverage control, collision avoidance, and self-organizing drone constellation are all part of the algorithm. The suggested approach shows promising results according to simulations

    Power allocation and energy cooperation for UAV-enabled MmWave networks: A Multi-Agent Deep Reinforcement Learning approach

    Get PDF
    Unmanned Aerial Vehicle (UAV)-assisted cellular networks over the millimeter-wave (mmWave) frequency band can meet the requirements of a high data rate and flexible coverage in next-generation communication networks. However, higher propagation loss and the use of a large number of antennas in mmWave networks give rise to high energy consumption and UAVs are constrained by their low-capacity onboard battery. Energy harvesting (EH) is a viable solution to reduce the energy cost of UAV-enabled mmWave networks. However, the random nature of renewable energy makes it challenging to maintain robust connectivity in UAV-assisted terrestrial cellular networks. Energy cooperation allows UAVs to send their excessive energy to other UAVs with reduced energy. In this paper, we propose a power allocation algorithm based on energy harvesting and energy cooperation to maximize the throughput of a UAV-assisted mmWave cellular network. Since there is channel-state uncertainty and the amount of harvested energy can be treated as a stochastic process, we propose an optimal multi-agent deep reinforcement learning algorithm (DRL) named Multi-Agent Deep Deterministic Policy Gradient (MADDPG) to solve the renewable energy resource allocation problem for throughput maximization. The simulation results show that the proposed algorithm outperforms the Random Power (RP), Maximal Power (MP) and value-based Deep Q-Learning (DQL) algorithms in terms of network throughput.This work was supported by the Agencia Estatal de Investigación of Ministerio de Ciencia e Innovación of Spain under project PID2019-108713RB-C51 MCIN/AEI /10.13039/501100011033Postprint (published version
    corecore