185 research outputs found

    Contemplation of tone mapping operators in high dynamic range imaging

    Get PDF
    The technique of tone mapping has found widespread popularity in the modern era owing to its applications in the digital world. There are a considerable number of tone mapping techniques that have been developed so far. One method may be better than the other in some cases which is determined by the requirement of the user. In this paper, some of the techniques for tone mapping/tone reproduction of high dynamic range images have been contemplated. The classification of tone mapping operators has also been given. However, it has been found that these techniques lack in providing quality of service visualization of high dynamic range images. This paper has tried to highlight the drawbacks in the existing traditional methods so that the tone-mapped techniques can be enhanced

    A robust patch-based synthesis framework for combining inconsistent images

    Get PDF
    Current methods for combining different images produce visible artifacts when the sources have very different textures and structures, come from far view points, or capture dynamic scenes with motions. In this thesis, we propose a patch-based synthesis algorithm to plausibly combine different images that have color, texture, structural, and geometric inconsistencies. For some applications such as cloning and stitching where a gradual blend is required, we present a new method for synthesizing a transition region between two source images, such that inconsistent properties change gradually from one source to the other. We call this process image melding. For gradual blending, we generalized patch-based optimization foundation with three key generalizations: First, we enrich the patch search space with additional geometric and photometric transformations. Second, we integrate image gradients into the patch representation and replace the usual color averaging with a screened Poisson equation solver. Third, we propose a new energy based on mixed L2/L0 norms for colors and gradients that produces a gradual transition between sources without sacrificing texture sharpness. Together, all three generalizations enable patch-based solutions to a broad class of image melding problems involving inconsistent sources: object cloning, stitching challenging panoramas, hole filling from multiple photos, and image harmonization. We also demonstrate another application which requires us to address inconsistencies across the images: high dynamic range (HDR) reconstruction using sequential exposures. In this application, the results will suffer from objectionable artifacts for dynamic scenes if the inconsistencies caused by significant scene motions are not handled properly. In this thesis, we propose a new approach to HDR reconstruction that uses information in all exposures while being more robust to motion than previous techniques. Our algorithm is based on a novel patch-based energy-minimization formulation that integrates alignment and reconstruction in a joint optimization through an equation we call the HDR image synthesis equation. This allows us to produce an HDR result that is aligned to one of the exposures yet contains information from all of them. These two applications (image melding and high dynamic range reconstruction) show that patch based methods like the one proposed in this dissertation can address inconsistent images and could open the door to many new image editing applications in the future

    A Bayesian Hyperprior Approach for Joint Image Denoising and Interpolation, with an Application to HDR Imaging

    Full text link
    Recently, impressive denoising results have been achieved by Bayesian approaches which assume Gaussian models for the image patches. This improvement in performance can be attributed to the use of per-patch models. Unfortunately such an approach is particularly unstable for most inverse problems beyond denoising. In this work, we propose the use of a hyperprior to model image patches, in order to stabilize the estimation procedure. There are two main advantages to the proposed restoration scheme: Firstly it is adapted to diagonal degradation matrices, and in particular to missing data problems (e.g. inpainting of missing pixels or zooming). Secondly it can deal with signal dependent noise models, particularly suited to digital cameras. As such, the scheme is especially adapted to computational photography. In order to illustrate this point, we provide an application to high dynamic range imaging from a single image taken with a modified sensor, which shows the effectiveness of the proposed scheme.Comment: Some figures are reduced to comply with arxiv's size constraints. Full size images are available as HAL technical report hal-01107519v5, IEEE Transactions on Computational Imaging, 201

    Variational image fusion

    Get PDF
    The main goal of this work is the fusion of multiple images to a single composite that offers more information than the individual input images. We approach those fusion tasks within a variational framework. First, we present iterative schemes that are well-suited for such variational problems and related tasks. They lead to efficient algorithms that are simple to implement and well-parallelisable. Next, we design a general fusion technique that aims for an image with optimal local contrast. This is the key for a versatile method that performs well in many application areas such as multispectral imaging, decolourisation, and exposure fusion. To handle motion within an exposure set, we present the following two-step approach: First, we introduce the complete rank transform to design an optic flow approach that is robust against severe illumination changes. Second, we eliminate remaining misalignments by means of brightness transfer functions that relate the brightness values between frames. Additional knowledge about the exposure set enables us to propose the first fully coupled method that jointly computes an aligned high dynamic range image and dense displacement fields. Finally, we present a technique that infers depth information from differently focused images. In this context, we additionally introduce a novel second order regulariser that adapts to the image structure in an anisotropic way.Das Hauptziel dieser Arbeit ist die Fusion mehrerer Bilder zu einem Einzelbild, das mehr Informationen bietet als die einzelnen Eingangsbilder. Wir verwirklichen diese Fusionsaufgaben in einem variationellen Rahmen. Zunächst präsentieren wir iterative Schemata, die sich gut für solche variationellen Probleme und verwandte Aufgaben eignen. Danach entwerfen wir eine Fusionstechnik, die ein Bild mit optimalem lokalen Kontrast anstrebt. Dies ist der Schlüssel für eine vielseitige Methode, die gute Ergebnisse für zahlreiche Anwendungsbereiche wie Multispektralaufnahmen, Bildentfärbung oder Belichtungsreihenfusion liefert. Um Bewegungen in einer Belichtungsreihe zu handhaben, präsentieren wir folgenden Zweischrittansatz: Zuerst stellen wir die komplette Rangtransformation vor, um eine optische Flussmethode zu entwerfen, die robust gegenüber starken Beleuchtungsänderungen ist. Dann eliminieren wir verbleibende Registrierungsfehler mit der Helligkeitstransferfunktion, welche die Helligkeitswerte zwischen Bildern in Beziehung setzt. Zusätzliches Wissen über die Belichtungsreihe ermöglicht uns, die erste vollständig gekoppelte Methode vorzustellen, die gemeinsam ein registriertes Hochkontrastbild sowie dichte Bewegungsfelder berechnet. Final präsentieren wir eine Technik, die von unterschiedlich fokussierten Bildern Tiefeninformation ableitet. In diesem Kontext stellen wir zusätzlich einen neuen Regularisierer zweiter Ordnung vor, der sich der Bildstruktur anisotrop anpasst

    Variational image fusion

    Get PDF
    The main goal of this work is the fusion of multiple images to a single composite that offers more information than the individual input images. We approach those fusion tasks within a variational framework. First, we present iterative schemes that are well-suited for such variational problems and related tasks. They lead to efficient algorithms that are simple to implement and well-parallelisable. Next, we design a general fusion technique that aims for an image with optimal local contrast. This is the key for a versatile method that performs well in many application areas such as multispectral imaging, decolourisation, and exposure fusion. To handle motion within an exposure set, we present the following two-step approach: First, we introduce the complete rank transform to design an optic flow approach that is robust against severe illumination changes. Second, we eliminate remaining misalignments by means of brightness transfer functions that relate the brightness values between frames. Additional knowledge about the exposure set enables us to propose the first fully coupled method that jointly computes an aligned high dynamic range image and dense displacement fields. Finally, we present a technique that infers depth information from differently focused images. In this context, we additionally introduce a novel second order regulariser that adapts to the image structure in an anisotropic way.Das Hauptziel dieser Arbeit ist die Fusion mehrerer Bilder zu einem Einzelbild, das mehr Informationen bietet als die einzelnen Eingangsbilder. Wir verwirklichen diese Fusionsaufgaben in einem variationellen Rahmen. Zunächst präsentieren wir iterative Schemata, die sich gut für solche variationellen Probleme und verwandte Aufgaben eignen. Danach entwerfen wir eine Fusionstechnik, die ein Bild mit optimalem lokalen Kontrast anstrebt. Dies ist der Schlüssel für eine vielseitige Methode, die gute Ergebnisse für zahlreiche Anwendungsbereiche wie Multispektralaufnahmen, Bildentfärbung oder Belichtungsreihenfusion liefert. Um Bewegungen in einer Belichtungsreihe zu handhaben, präsentieren wir folgenden Zweischrittansatz: Zuerst stellen wir die komplette Rangtransformation vor, um eine optische Flussmethode zu entwerfen, die robust gegenüber starken Beleuchtungsänderungen ist. Dann eliminieren wir verbleibende Registrierungsfehler mit der Helligkeitstransferfunktion, welche die Helligkeitswerte zwischen Bildern in Beziehung setzt. Zusätzliches Wissen über die Belichtungsreihe ermöglicht uns, die erste vollständig gekoppelte Methode vorzustellen, die gemeinsam ein registriertes Hochkontrastbild sowie dichte Bewegungsfelder berechnet. Final präsentieren wir eine Technik, die von unterschiedlich fokussierten Bildern Tiefeninformation ableitet. In diesem Kontext stellen wir zusätzlich einen neuen Regularisierer zweiter Ordnung vor, der sich der Bildstruktur anisotrop anpasst

    Video surveillance systems-current status and future trends

    Get PDF
    Within this survey an attempt is made to document the present status of video surveillance systems. The main components of a surveillance system are presented and studied thoroughly. Algorithms for image enhancement, object detection, object tracking, object recognition and item re-identification are presented. The most common modalities utilized by surveillance systems are discussed, putting emphasis on video, in terms of available resolutions and new imaging approaches, like High Dynamic Range video. The most important features and analytics are presented, along with the most common approaches for image / video quality enhancement. Distributed computational infrastructures are discussed (Cloud, Fog and Edge Computing), describing the advantages and disadvantages of each approach. The most important deep learning algorithms are presented, along with the smart analytics that they utilize. Augmented reality and the role it can play to a surveillance system is reported, just before discussing the challenges and the future trends of surveillance

    Tone mapping for high dynamic range images

    Get PDF
    Tone mapping is an essential step for the reproduction of "nice looking" images. It provides the mapping between the luminances of the original scene to the output device's display values. When the dynamic range of the captured scene is smaller or larger than that of the display device, tone mapping expands or compresses the luminance ratios. We address the problem of tone mapping high dynamic range (HDR) images to standard displays (CRT, LCD) and to HDR displays. With standard displays, the dynamic range of the captured HDR scene must be compressed significantly, which can induce a loss of contrast resulting in a loss of detail visibility. Local tone mapping operators can be used in addition to the global compression to increase the local contrast and thus improve detail visibility, but this tends to create artifacts. We developed a local tone mapping method that solves the problems generally encountered by local tone mapping algorithms. Namely, it does not create halo artifacts, nor graying-out of low contrast areas, and provides good color rendition. We then investigated specifically the rendition of color and confirmed that local tone mapping algorithms must be applied to the luminance channel only. We showed that the correlation between luminance and chrominance plays a role in the appearance of the final image but a perfect decorrelation is not necessary. Recently developed HDR monitors enable the display of HDR images with hardly any compression of their dynamic range. The arrival of these displays on the market create the need for new tone mapping algorithms. In particular, legacy images that were mapped to SDR displays must be re-rendered to HDR displays, taking best advantage of the increase in dynamic range. This operation can be seen as the reverse of the tone mapping to SDR. We propose a piecewise linear tone scale function that enhances the brightness of specular highlights so that the sensation of naturalness is improved. Our tone scale algorithm is based on the segmentation of the image into its diffuse and specular components as well as on the range of display luminance that is allocated to the specular component and the diffuse component, respectively. We performed a psychovisual experiment to validate the benefit of our tone scale. The results showed that, with HDR displays, allocating more luminance range to the specular component than what was allocated in the image rendered to SDR displays provides more natural looking images

    Compression, Modeling, and Real-Time Rendering of Realistic Materials and Objects

    Get PDF
    The realism of a scene basically depends on the quality of the geometry, the illumination and the materials that are used. Whereas many sources for the creation of three-dimensional geometry exist and numerous algorithms for the approximation of global illumination were presented, the acquisition and rendering of realistic materials remains a challenging problem. Realistic materials are very important in computer graphics, because they describe the reflectance properties of surfaces, which are based on the interaction of light and matter. In the real world, an enormous diversity of materials can be found, comprising very different properties. One important objective in computer graphics is to understand these processes, to formalize them and to finally simulate them. For this purpose various analytical models do already exist, but their parameterization remains difficult as the number of parameters is usually very high. Also, they fail for very complex materials that occur in the real world. Measured materials, on the other hand, are prone to long acquisition time and to huge input data size. Although very efficient statistical compression algorithms were presented, most of them do not allow for editability, such as altering the diffuse color or mesostructure. In this thesis, a material representation is introduced that makes it possible to edit these features. This makes it possible to re-use the acquisition results in order to easily and quickly create deviations of the original material. These deviations may be subtle, but also substantial, allowing for a wide spectrum of material appearances. The approach presented in this thesis is not based on compression, but on a decomposition of the surface into several materials with different reflection properties. Based on a microfacette model, the light-matter interaction is represented by a function that can be stored in an ordinary two-dimensional texture. Additionally, depth information, local rotations, and the diffuse color are stored in these textures. As a result of the decomposition, some of the original information is inevitably lost, therefore an algorithm for the efficient simulation of subsurface scattering is presented as well. Another contribution of this work is a novel perception-based simplification metric that includes the material of an object. This metric comprises features of the human visual system, for example trichromatic color perception or reduced resolution. The proposed metric allows for a more aggressive simplification in regions where geometric metrics do not simplif

    Real-Time Algorithms for High Dynamic Range Video

    Full text link
    A recurring problem in capturing video is the scene having a range of brightness values that exceeds the capabilities of the capturing device. An example would be a video camera in a bright outside area, directed at the entrance of a building. Because of the potentially big brightness difference, it may not be possible to capture details of the inside of the building and the outside simultaneously using just one shutter speed setting. This results in under- and overexposed pixels in the video footage. The approach we follow in this thesis to overcome this problem is temporal exposure bracketing, i.e., using a set of images captured in quick sequence at different shutter settings. Each image then captures one facet of the scene's brightness range. When fused together, a high dynamic range (HDR) video frame is created that reveals details in dark and bright regions simultaneously. The process of creating a frame in an HDR video can be thought of as a pipeline where the output of each step is the input to the subsequent one. It begins by capturing a set of regular images using varying shutter speeds. Next, the images are aligned with respect to each other to compensate for camera and scene motion during capture. The aligned images are then merged together to create a single HDR frame containing accurate brightness values of the entire scene. As a last step, the HDR frame is tone mapped in order to be displayable on a regular screen with a lower dynamic range. This thesis covers algorithms for these steps that allow the creation of HDR video in real-time. When creating videos instead of still images, the focus lies on high capturing and processing speed and on assuring temporal consistency between the video frames. In order to achieve this goal, we take advantage of the knowledge gained from the processing of previous frames in the video. This work addresses the following aspects in particular. The image size parameters for the set of base images are chosen such that only as little image data as possible is captured. We make use of the fact that it is not always necessary to capture full size images when only small portions of the scene require HDR. Avoiding redundancy in the image material is an obvious approach to reducing the overall time taken to generate a frame. With the aid of the previous frames, we calculate brightness statistics of the scene. The exposure values are chosen in a way, such that frequently occurring brightness values are well-exposed in at least one of the images in the sequence. The base images from which the HDR frame is created are captured in quick succession. The effects of intermediate camera motion are thus less intense than in the still image case, and a comparably simpler camera motion model can be used. At the same time, however, there is much less time available to estimate motion. For this reason, we use a fast heuristic that makes use of the motion information obtained in previous frames. It is robust to the large brightness difference between the images of an exposure sequence. The range of luminance values of an HDR frame must be tone mapped to the displayable range of the output device. Most available tone mapping operators are designed for still images and scale the dynamic range of each frame independently. In situations where the scene's brightness statistics change quickly, these operators produce visible image flicker. We have developed an algorithm that detects such situations in an HDR video. Based on this detection, a temporal stability criterion for the tone mapping parameters then prevents image flicker. All methods for capture, creation and display of HDR video introduced in this work have been fully implemented, tested and integrated into a running HDR video system. The algorithms were analyzed for parallelizability and, if applicable, adjusted and implemented on a high-performance graphics chip
    corecore