395 research outputs found

    DeltaGAN: Towards Diverse Few-shot Image Generation with Sample-Specific Delta

    Full text link
    Learning to generate new images for a novel category based on only a few images, named as few-shot image generation, has attracted increasing research interest. Several state-of-the-art works have yielded impressive results, but the diversity is still limited. In this work, we propose a novel Delta Generative Adversarial Network (DeltaGAN), which consists of a reconstruction subnetwork and a generation subnetwork. The reconstruction subnetwork captures intra-category transformation, i.e., "delta", between same-category pairs. The generation subnetwork generates sample-specific "delta" for an input image, which is combined with this input image to generate a new image within the same category. Besides, an adversarial delta matching loss is designed to link the above two subnetworks together. Extensive experiments on five few-shot image datasets demonstrate the effectiveness of our proposed method

    Deep learning for real-world object detection

    Get PDF

    Fine-Grained Image Analysis with Deep Learning: A Survey

    Get PDF
    Fine-grained image analysis (FGIA) is a longstanding and fundamental problem in computer vision and pattern recognition, and underpins a diverse set of real-world applications. The task of FGIA targets analyzing visual objects from subordinate categories, e.g., species of birds or models of cars. The small inter-class and large intra-class variation inherent to fine-grained image analysis makes it a challenging problem. Capitalizing on advances in deep learning, in recent years we have witnessed remarkable progress in deep learning powered FGIA. In this paper we present a systematic survey of these advances, where we attempt to re-define and broaden the field of FGIA by consolidating two fundamental fine-grained research areas -- fine-grained image recognition and fine-grained image retrieval. In addition, we also review other key issues of FGIA, such as publicly available benchmark datasets and related domain-specific applications. We conclude by highlighting several research directions and open problems which need further exploration from the community.Comment: Accepted by IEEE TPAM

    Text Classification

    Get PDF
    There is an abundance of text data in this world but most of it is raw. We need to extract information from this data to make use of it. One way to extract this information from raw text is to apply informative labels drawn from a pre-defined fixed set i.e. Text Classification. In this thesis, we focus on the general problem of text classification, and work towards solving challenges associated to binary/multi-class/multi-label classification. More specifically, we deal with the problem of (i) Zero-shot labels during testing; (ii) Active learning for text screening; (iii) Multi-label classification under low supervision; (iv) Structured label space; (v) Classifying pairs of words in raw text i.e. Relation Extraction. For (i), we use a zero-shot classification model that utilizes independently learned semantic embeddings. Regarding (ii), we propose a novel active learning algorithm that reduces problem of bias in naive active learning algorithms. For (iii), we propose neural candidate-selector architecture that starts from a set of high-recall candidate labels to obtain high-precision predictions. In the case of (iv), we proposed an attention based neural tree decoder that recursively decodes an abstract into the ontology tree. For (v), we propose using second-order relations that are derived by explicitly connecting pairs of words via context token(s) for improved relation extraction. We use a wide variety of both traditional and deep machine learning tools. More specifically, we used traditional machine learning models like multi-valued linear regression and logistic regression for (i, ii), deep convolutional neural networks for (iii), recurrent neural networks for (iv) and transformer networks for (v)

    Object detection and classification using few-shot learning in smart agriculture: A scoping mini review

    Get PDF
    Smart agriculture is the application of modern information and communication technologies (ICT) to agriculture, leading to what we might call a third green revolution. These include object detection and classification such as plants, leaves, weeds, fruits as well as animals and pests in the agricultural domain. Object detection, one of the most fundamental and difficult issues in computer vision has attracted a lot of attention lately. Its evolution over the previous two decades can be seen as the pinnacle of computer vision advancement. The detection of objects can be done via digital image processing. Machine learning has achieved significant advances in the field of digital image processing in current years, significantly outperforming previous techniques. One of the techniques that is popular is Few-Shot Learning (FSL). FSL is a type of meta-learning in which a learner is given practice on several related tasks during the meta-training phase to be able to generalize successfully to new but related activities with a limited number of instances during the meta-testing phase. Here, the application of FSL in smart agriculture, with particular in the detection and classification is reported. The aim is to review the state of the art of currently available FSL models, networks, classifications, and offer some insights into possible future avenues of research. It is found that FSL shows a higher accuracy of 99.48% in vegetable disease recognition on a limited dataset. It is also shown that FSL is reliable to use with very few instances and less training time
    corecore