2,326 research outputs found

    Well-posedness of a nonlinear integro-differential problem and its rearranged formulation

    Full text link
    We study the existence and uniqueness of solutions of a nonlinear integro-differential problem which we reformulate introducing the notion of the decreasing rearrangement of the solution. A dimensional reduction of the problem is obtained and a detailed analysis of the properties of the solutions of the model is provided. Finally, a fast numerical method is devised and implemented to show the performance of the model when typical image processing tasks such as filtering and segmentation are performed.Comment: Final version. To appear in Nolinear Analysis Real World Applications (2016

    Seismic Fault Preserving Diffusion

    Full text link
    This paper focuses on the denoising and enhancing of 3-D reflection seismic data. We propose a pre-processing step based on a non linear diffusion filtering leading to a better detection of seismic faults. The non linear diffusion approaches are based on the definition of a partial differential equation that allows us to simplify the images without blurring relevant details or discontinuities. Computing the structure tensor which provides information on the local orientation of the geological layers, we propose to drive the diffusion along these layers using a new approach called SFPD (Seismic Fault Preserving Diffusion). In SFPD, the eigenvalues of the tensor are fixed according to a confidence measure that takes into account the regularity of the local seismic structure. Results on both synthesized and real 3-D blocks show the efficiency of the proposed approach.Comment: 10 page

    Weighted Mean Curvature

    Full text link
    In image processing tasks, spatial priors are essential for robust computations, regularization, algorithmic design and Bayesian inference. In this paper, we introduce weighted mean curvature (WMC) as a novel image prior and present an efficient computation scheme for its discretization in practical image processing applications. We first demonstrate the favorable properties of WMC, such as sampling invariance, scale invariance, and contrast invariance with Gaussian noise model; and we show the relation of WMC to area regularization. We further propose an efficient computation scheme for discretized WMC, which is demonstrated herein to process over 33.2 giga-pixels/second on GPU. This scheme yields itself to a convolutional neural network representation. Finally, WMC is evaluated on synthetic and real images, showing its superiority quantitatively to total-variation and mean curvature.Comment: 12 page

    Efficient Denoising and Sharpening of Color Images through Numerical Solution of Nonlinear Diffusion Equations

    Get PDF
    The purpose of this project is to enhance color images through denoising and sharpening, two important branches of image processing, by mathematically modeling the images. Modifications are made to two existing nonlinear diffusion image processing models to adapt them to color images. This is done by treating the red, green, and blue (RGB) channels of color images independently, contrary to the conventional idea that the channels should not be treated independently. A new numerical method is needed to solve our models for high resolution images since current methods are impractical. To produce an efficient method, the solution is represented as a linear combination of sines and cosines for easier numerical treatment and then computed by a combination of Krylov subspace spectral (KSS) methods and exponential propagation iterative (EPI) methods. Numerical experiments demonstrate that the proposed approach for image processing is effective for denoising and sharpening
    corecore