68,889 research outputs found

    Dynamic System Adaptation by Constraint Orchestration

    Get PDF
    For Paradigm models, evolution is just-in-time specified coordination conducted by a special reusable component McPal. Evolution can be treated consistently and on-the-fly through Paradigm's constraint orchestration, also for originally unforeseen evolution. UML-like diagrams visually supplement such migration, as is illustrated for the case of a critical section solution evolving into a pipeline architecture.Comment: 19 page

    Discrete mechanics and optimal control for constrained systems

    Get PDF
    The equations of motion of a controlled mechanical system subject to holonomic constraints may be formulated in terms of the states and controls by applying a constrained version of the Lagrange-d’Alembert principle. This paper derives a structure-preserving scheme for the optimal control of such systems using, as one of the key ingredients, a discrete analogue of that principle. This property is inherited when the system is reduced to its minimal dimension by the discrete null space method. Together with initial and final conditions on the configuration and conjugate momentum, the reduced discrete equations serve as nonlinear equality constraints for the minimization of a given objective functional. The algorithm yields a sequence of discrete configurations together with a sequence of actuating forces, optimally guiding the system from the initial to the desired final state. In particular, for the optimal control of multibody systems, a force formulation consistent with the joint constraints is introduced. This enables one to prove the consistency of the evolution of momentum maps. Using a two-link pendulum, the method is compared with existing methods. Further, it is applied to a satellite reorientation maneuver and a biomotion problem

    THE EVOLVING PHILOSOPHERS PROBLEM - DYNAMIC CHANGE MANAGEMENT

    No full text
    Published versio

    Dynamics of organizational culture: Individual beliefs vs. social conformity

    Get PDF
    The complex nature of organizational culture challenges our ability to infers its underlying dynamics from observational studies. Recent computational studies have adopted a distinct different view, where plausible mechanisms are proposed to describe a wide range of social phenomena, including the onset and evolution of organizational culture. In this spirit, this work introduces an empirically-grounded, agent-based model which relaxes a set of assumptions that describes past work - (a) omittance of an individual's strive for achieving cognitive coherence, (b) limited integration of important contextual factors - by utilizing networks of beliefs and incorporating social rank into the dynamics. As a result, we illustrate that: (i) an organization may appear to be increasingly coherent in terms of organizational culture, yet be composed of individuals with reduced levels of coherence, (ii) the components of social conformity - peer-pressure and social rank - are influential at different aggregation levels.Comment: 20 pages, 8 figure
    corecore