1,080 research outputs found

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    Issues of using wireless sensor network to monitor urban air quality

    Get PDF
    Frequent monitoring of urban environment has now been regulated in most EU countries. Due to the design and cost of high-quality sensors, the current approach using these sensors may not provide data with an appropriate spatial and temporal resolution. As a result, using a wireless sensor network constructed by a large number of low-cost sensors is becoming increasingly popular to support the monitoring of urban environments. However, in practice, there are many issues that prevent such networks to be widely adopted. In this paper, we use data and lessons learnt from three real deployments to illustrate those issues. The issues are classified into three main categories and discussed according to the different sensing stages. In the end, we summarise a list of open challenges which we believe are significant for the future research

    IoT-inspired Framework for Real-time Prediction of Forest Fire

    Get PDF
    Wildfires are one of the most devastating catastrophes and can inflict tremendous losses to life and nature. Moreover, the loss of civilization is incomprehensible, potentially extending suddenly over vast land sectors. Global warming has contributed to increased forest fires, but it needs immediate attention from the organizations involved. This analysis aims to forecast forest fires to reduce losses and take decisive measures in the direction of protection. Specifically, this study suggests an energy-efficient IoT architecture for the early detection of wildfires backed by fog-cloud computing technologies. To evaluate the repeatable information obtained from IoT sensors in a time-sensitive manner, Jaccard similarity analysis is used. This data is assessed in the fog processing layer and reduces the single value of multidimensional data called the Forest Fire Index. Finally, based on Wildfire Triggering Criteria, the Artificial Neural Network (ANN) is used to simulate the susceptibility of the forest area. ANN are intelligent techniques for inferring future outputs as these can be made hybrid with fuzzy methods for decision-modeling. For productive visualization of the geographical location of wildfire vulnerability, the Self-Organized Mapping Technique is used. Simulation of the implementation is done over multiple datasets. For total efficiency assessment, outcomes are contrasted in comparison to other techniqueS

    SmartEAR: Smartwatch-based Unsupervised Learning for Multi-modal Signal Analysis in Opportunistic Sensing Framework

    Get PDF
    Wrist-bands such as smartwatches have become an unobtrusive interface for collecting physiological and contextual data from users. Smartwatches are being used for smart healthcare, telecare, and wellness monitoring. In this paper, we used data collected from the AnEAR framework leveraging smartwatches to gather and store physiological data from patients in naturalistic settings. This data included temperature, galvanic skin response (GSR), acceleration, and heart rate (HR). In particular, we focused on HR and acceleration, as these two modalities are often correlated. Since the data was unlabeled we relied on unsupervised learning for multi-modal signal analysis. We propose using k-means clustering, GMM clustering, and Self-Organizing maps based on Neural Networks for group the multi-modal data into homogeneous clusters. This strategy helped in discovering latent structures in our data

    Data-driven classification of low-power communication signals by an unauthenticated user using a software-defined radio

    Full text link
    Many large-scale distributed multi-agent systems exchange information over low-power communication networks. In particular, agents intermittently communicate state and control signals in robotic network applications, often with limited power over an unlicensed spectrum, prone to eavesdropping and denial-of-service attacks. In this paper, we argue that a widely popular low-power communication protocol known as LoRa is vulnerable to denial-of-service attacks by an unauthenticated attacker if it can successfully identify a target signal's bandwidth and spreading factor. Leveraging a structural pattern in the LoRa signal's instantaneous frequency representation, we relate the problem of jointly inferring the two unknown parameters to a classification problem, which can be efficiently implemented using neural networks.Comment: Accepted for presentation at Asilomar Conference on Signals, Systems, and Computers, 202

    IoT architecture proposal from a survey of pedestrian-oriented applications

    Get PDF
    The significant improvement in the field of Internet of Things (IoT) has made human life more sophisticated. In fact, the IoT is covering devices and appliances that support one or more common ecosystems, and can be controlled via devices associated with that ecosystem. This control is only possible by building an architecture. Whether in indoor or outdoor environments, IoT services are only available to individuals or pedestrians because a IoT architecture enables that the quality of its components (i.e. Cloud/Fog servers, protocol communication and IoT devices) and the way they interact are directly correlated in terms of effectiveness and applicability. This paper aims to provide a comprehensive overview of an architecture in pedestrian-oriented applications in an IoT environment. Moreover, our survey has taken into account the main challenges and limitations of each component of IoT technology

    Bio-inspired computation for big data fusion, storage, processing, learning and visualization: state of the art and future directions

    Get PDF
    This overview gravitates on research achievements that have recently emerged from the confluence between Big Data technologies and bio-inspired computation. A manifold of reasons can be identified for the profitable synergy between these two paradigms, all rooted on the adaptability, intelligence and robustness that biologically inspired principles can provide to technologies aimed to manage, retrieve, fuse and process Big Data efficiently. We delve into this research field by first analyzing in depth the existing literature, with a focus on advances reported in the last few years. This prior literature analysis is complemented by an identification of the new trends and open challenges in Big Data that remain unsolved to date, and that can be effectively addressed by bio-inspired algorithms. As a second contribution, this work elaborates on how bio-inspired algorithms need to be adapted for their use in a Big Data context, in which data fusion becomes crucial as a previous step to allow processing and mining several and potentially heterogeneous data sources. This analysis allows exploring and comparing the scope and efficiency of existing approaches across different problems and domains, with the purpose of identifying new potential applications and research niches. Finally, this survey highlights open issues that remain unsolved to date in this research avenue, alongside a prescription of recommendations for future research.This work has received funding support from the Basque Government (Eusko Jaurlaritza) through the Consolidated Research Group MATHMODE (IT1294-19), EMAITEK and ELK ARTEK programs. D. Camacho also acknowledges support from the Spanish Ministry of Science and Education under PID2020-117263GB-100 grant (FightDIS), the Comunidad Autonoma de Madrid under S2018/TCS-4566 grant (CYNAMON), and the CHIST ERA 2017 BDSI PACMEL Project (PCI2019-103623, Spain)

    Data Analysis Methods for Software Systems

    Get PDF
    Using statistics, econometrics, machine learning, and functional data analysis methods, we evaluate the consequences of the lockdown during the COVID-19 pandemics for wage inequality and unemployment. We deduce that these two indicators mostly reacted to the first lockdown from March till June 2020. Also, analysing wage inequality, we conduct analysis separately for males and females and different age groups.We noticed that young females were affected mostly by the lockdown.Nevertheless, all the groups reacted to the lockdown at some level

    Big data analytics for large-scale wireless networks: Challenges and opportunities

    Full text link
    © 2019 Association for Computing Machinery. The wide proliferation of various wireless communication systems and wireless devices has led to the arrival of big data era in large-scale wireless networks. Big data of large-scale wireless networks has the key features of wide variety, high volume, real-time velocity, and huge value leading to the unique research challenges that are different from existing computing systems. In this article, we present a survey of the state-of-art big data analytics (BDA) approaches for large-scale wireless networks. In particular, we categorize the life cycle of BDA into four consecutive stages: Data Acquisition, Data Preprocessing, Data Storage, and Data Analytics. We then present a detailed survey of the technical solutions to the challenges in BDA for large-scale wireless networks according to each stage in the life cycle of BDA. Moreover, we discuss the open research issues and outline the future directions in this promising area
    corecore