357 research outputs found

    Chaotic memristor

    Get PDF
    We suggest and experimentally demonstrate a chaotic memory resistor (memristor). The core of our approach is to use a resistive system whose equations of motion for its internal state variables are similar to those describing a particle in a multi-well potential. Using a memristor emulator, the chaotic memristor is realized and its chaotic properties are measured. A Poincar\'{e} plot showing chaos is presented for a simple nonautonomous circuit involving only a voltage source directly connected in series to a memristor and a standard resistor. We also explore theoretically some details of this system, plotting the attractor and calculating Lyapunov exponents. The multi-well potential used resembles that of many nanoscale memristive devices, suggesting the possibility of chaotic dynamics in other existing memristive systems.Comment: Applied Physics A (in press

    On the validity of memristor modeling in the neural network literature

    Full text link
    An analysis of the literature shows that there are two types of non-memristive models that have been widely used in the modeling of so-called "memristive" neural networks. Here, we demonstrate that such models have nothing in common with the concept of memristive elements: they describe either non-linear resistors or certain bi-state systems, which all are devices without memory. Therefore, the results presented in a significant number of publications are at least questionable, if not completely irrelevant to the actual field of memristive neural networks

    A Compact CMOS Memristor Emulator Circuit and its Applications

    Full text link
    Conceptual memristors have recently gathered wider interest due to their diverse application in non-von Neumann computing, machine learning, neuromorphic computing, and chaotic circuits. We introduce a compact CMOS circuit that emulates idealized memristor characteristics and can bridge the gap between concepts to chip-scale realization by transcending device challenges. The CMOS memristor circuit embodies a two-terminal variable resistor whose resistance is controlled by the voltage applied across its terminals. The memristor 'state' is held in a capacitor that controls the resistor value. This work presents the design and simulation of the memristor emulation circuit, and applies it to a memcomputing application of maze solving using analog parallelism. Furthermore, the memristor emulator circuit can be designed and fabricated using standard commercial CMOS technologies and opens doors to interesting applications in neuromorphic and machine learning circuits.Comment: Submitted to International Symposium of Circuits and Systems (ISCAS) 201
    corecore